Меню
Бесплатно
Главная  /  Поделки  /  Школьная энциклопедия. Какие бывают туманности в космосе

Школьная энциклопедия. Какие бывают туманности в космосе

Туманность эмиссионных линий и эмиссионная туманность создают собственное свечение. Атомы водорода приходят в активность из-з мощного ультрафиолетового света звезд. Затем водород ионизируется (теряет электрон, излучающий фотон).

Звезды О-типа могут ионизировать газ в радиусе 350 световых лет. Туманность М17 обнаружил де Шезо в 1746 году, а в 1764 году ее заново открыл Шарль Мессье. Она находится в Стрельце и называется также туманностью Лебедя, Омега, Подкова и Лобстер. Невероятно яркая и ее розовое свечение можно заметить без использования техники в низких широтах (видимая величина – 6). Внутри находятся молодые звезды, создающие область HII. За красный цвет отвечает ионизированный водород.

Инфракрасный свет помогает находить огромное количество пыли, намекающее на активное звездообразование. Внутри находится скопление из 30 звезд, затененных туманностью, протирающейся в диметре на 40 световых лет. Общая масса в 800 раз превосходит солнечную.

М17 удалена на 5500 световых лет. Вместе с М16 расположена в одном спиральном рукаве Млечного Пути (Стрельца-Киля).

Газопылевые туманности – палитра Вселенной

Вселенная - это, по сути, почти пустое пространство. Звезды занимают лишь ничтожную его долю. Однако, везде присутствует газ, хотя и в очень малых количествах. Это в основном водород, легчайший химический элемент. Если "зачерпнуть" обычной чайной чашкой (объем около 200 см3) вещество из межзвездного пространства на расстоянии 1-2 световых лет от Солнца, то в ней окажется примерно 20 атомов водорода и 2 атома гелия. В таком же объеме в обычном атмосферном воздухе содержится атомов кислорода и азота 1022. Все, что заполняет пространство между звездами внутри галактик, называется межзвездной средой. И основное, что составляет межзвездную среду - это межзвездный газ. Он довольно равномерно перемешан с межзвездной пылью и пронизывается межзвездными магнитными полями, космическими лучами и электромагнитным излучением.

Из межзвездного газа образуются звезды, которые на поздних стадиях эволюции вновь отдают часть своего вещества межзвездной среде. Некоторые из звезд, умирая, взрываются как Сверхновые, выбрасывая обратно в пространство значительную долю водорода, из которого они когда-то образовались. Но значительно важнее, что при таких взрывах выбрасывается большое количество тяжелых элементов, образовавшихся в недрах звезд в результате термоядерных реакций. И Земля и Солнце сконденсировались в межзвездном пространстве из газа, обогащенного таким путем углеродом, кислородом, железом и другими химическими элементами. Чтобы постичь закономерности такого цикла, нужно знать, каким образом новые поколения звезд последовательно конденсируются из межзвездного газа. Понять, как образуются звезды, - важная цель исследований межзвездного вещества.

200 лет назад астрономам стало ясно, что кроме планет, звезд и появляющихся изредка комет на небе наблюдаются и другие объекты. Эти объекты из-за их туманного вида были названы туманностями. Французский астроном Шарль Мессье (1730-1817) был вынужден создать каталог этих туманных объектов, чтобы избежать путаницы при поисках комет. Его каталог содержал 103 объекта и был опубликован в 1784 г. Теперь известно, что природа этих объектов, впервые объединенных в общую группу под названием "туманности", совершенно различна. Английский астроном Уильям Гершель (1738-1822), наблюдая все эти объекты, за семь лет открыл еще две тысячи новых туманностей. Он же выделил класс туманностей, которые с наблюдательной точки зрения казались ему отличными от остальных. Он назвал их "планетарными туманностями", поскольку они имели некоторое сходство с зеленоватыми дисками планет. Таким образом, мы будем рассматривать следующие объекты: межзвездный газ , межзвездная пыль , темные туманности , светлые туманности (самосветящиеся и отражательные) , планетарные туманности .

Примерно через миллион лет после начала расширения Вселенная еще представляла собой относительно однородную смесь газа и излучения. Не было ни звезд, ни галактик. Звезды образовались несколько позже в результате сжатия газа под действием собственной гравитации. Такой процесс называют гравитационной неустойчивостью. Когда звезда коллапсирует под действием огромного собственного гравитационного притяжения, ее внутренние слои непрерывно сжимаются. Это сжатие ведет к нагреву вещества. При температурах выше 107 К начинаются реакции, приводящие к образованию тяжелых элементов. Современный химический состав Солнечной системы является результатом реакций термоядерного синтеза, протекавших в первых поколениях звезд.

Стадия, когда выброшенное при взрыве Сверхновой вещество перемешивается с межзвездным газом и сжимается, снова образуя звезды, более всего сложна и хуже понятна, чем все остальные стадии. Во-первых, сам межзвездный газ неоднороден, он имеет клочковатую, облачную структуру. Во-вторых, расширяющаяся с огромной скоростью оболочка сверхновой выметает разреженный газ и сжимает его, усиливая неоднородности. В-третьих, уже через сотню лет остаток сверхновой содержит больше захваченного по пути межзвездного газа, чем вещества звезды. Кроме того, вещество перемешивается неидеально. На рисунке справа показан остаток сверхновой в Лебеде (NGC 6946). Считают, что волокна образованы расширяющимися оболочками газа. Видны завитки и петли, образованные светящимся газом остатка, расширяющимся со скоростью много тысяч километров в секунду. Может возникнуть вопрос, чем же завершается, в конце концов, космический цикл? Запасы газа уменьшаются. Ведь большая часть газа остается в маломассивных звездах, которые умирают спокойно, и не выбрасывают в окружающее пространство свое вещество. Со временем запасы его истощатся настолько, что ни одна звезда уже не сможет образоваться. К тому времени Солнце и другие старые звезды угаснут. Вселенная постепенно погрузится во мрак. Но конечная судьба Вселенной может быть и иной. Расширение постепенно прекратится и сменится сжатием. Через много миллиардов лет Вселенная сожмется вновь до невообразимо высокой плотности.

Межзвездный газ

Межзвездный газ составляет около 99% массы всей межзвездной среды и около 2% нашей Галактики. Температура газа колеблется в диапазоне от 4 К до 106 К. Излучает межзвездный газ также в широком диапазоне (от длинных радиоволн до жесткого гамма-излучения). Существуют области, где межзвездный газ находится в молекулярном состоянии (молекулярные облака) - это наиболее плотные и холодные части межзвездного газа. Есть области, где межзвездный газ состоит из нейтральных атомов водорода (области H I) и области ионизованного водорода (зоны H II), которыми являются светлые эмиссионные туманности вокруг горячих звезд.

По сравнению с Солнцем, в межзвездном газе заметно меньше тяжелых элементов, особенно алюминия, кальция, титана, железа и никеля. Межзвездный газ есть в галактиках всех типов. Больше всего его в неправильных (иррегулярных), а меньше всего в эллиптических галактиках. В нашей Галактике максимум газа сосредоточено на расстоянии 5 кпк от центра. Наблюдения показывают, что кроме упорядоченного движения вокруг центра Галактики, межзвездные облака имеют также и хаотические скорости. Через 30-100 млн. лет облако сталкивается с другим облаком. Образуются газо-пылевые комплексы. Вещество в них достаточно плотно для того, чтобы не пропускать на большую глубину основную часть проникающей радиации. Поэтому внутри комплексов межзвездный газ холоднее, чем в межзвездных облаках. Сложные процессы преобразования молекул вместе с гравитационной неустойчивостью ведут к возникновению самогравитирующих сгустков - протозвезд. Таким образом, молекулярные облака должны быстро (менее чем за 106 лет) превратиться в звезды. Межзвездный газ постоянно обменивается веществом со звездами. Согласно оценкам, в настоящее время в Галактике в звезды переходит газ в количестве примерно 5 масс Солнца в год.

Область М 42 в созвездии Ориона, где в наше время идет активный процесс звездообразования. Туманность светится из-за нагрева газа горячим излучением ярких звезд, находящихся поблизости. Итак, в процессе эволюции галактик происходит круговорот вещества: межзвездный газ -> звезды -> межзвездный газ, приводящий к постепенному увеличению содержания тяжелых элементов в межзвездном газе и звездах и уменьшению количества межзвездного газа в каждой из галактик. Не исключено, что в истории Галактики могли происходить задержки звездообразования на миллиарды лет.

Межзвездная пыль

Мелкие твердые частицы, рассеянные в межзвездном пространстве почти равномерно перемешаны с межзвездным газом. Размеры крупных газо-пылевых комплексов, о которых мы говорили выше, достигают десятков сотен парсек, а их масса составляет примерно 105 масс Солнца. Но существуют и небольшие плотные газо-пылевые образования - глобулы размером от 0,05 до нескольких пк и массой всего 0,1 - 100 масс Солнца. Межзвездные пылинки не сферичны и размер их примерно 0,1-1 мкм. Состоят они из песка и графита. Образуются они в оболочках поздних красных гигантов и сверхгигантов, оболочках новых и сверхновых звезд, в планетарных туманностях, около протозвезд. Тугоплавкое ядро одето в оболочку изо льда с примесями, которую в свою очередь окутывает слой атомарного водорода. Пылинки в межзвездной среде либо дробятся в результате столкновений друг с другом со скоростями больше 20 км/с, либо наоборот, слипаются, если скорости меньше 1 км/с.

Присутствие в межзвездной среде межзвездной пыли влияет на характеристики излучения исследуемых небесных тел. Пылинки ослабляют свет от далеких звезд, изменяют его спектральный состав и поляризацию. Помимо этого пылинки поглощают ультрафиолетовое излучение звезд и перерабатывают его в излучение с меньшей энергией. Ставшее в итоге инфракрасным, такое излучение наблюдается в спектрах планетарных туманностей, зон H II, околозвездных оболочек, сейфертовских галактик. На поверхности пылинок могут активно образовываться различные молекулы. Пылинки, как правило, электрически заряжены и взаимодействуют с межзвездными магнитными полями. Именно пылинкам мы обязаны таким эффектом как космическое мазерное излучение. Оно возникает в оболочках поздних холодных звезд и в молекулярных облаках (зоны H I и H II). Этот эффект усиления микроволнового излучения "работает", когда большое количество молекул окажется в неустойчивом возбужденном вращательном или колебательном состоянии и тогда достаточно одному фотону пройти через среду, чтобы вызвать лавинообразный переход молекул в основное состояние с минимальной энергией. А в результате мы видим узконаправленный (когерентный) очень мощный поток радиоизлучения. На рисунке показана молекула воды. Радиоизлучение от этой молекулы идет на волне 1,35 см. Кроме нее очень яркий мазер возникает на молекулах межзвездного гидроксила ОН на волне 18 см. Еще одна мазерная молекула SiO располагается в оболочках холодных звезд, находящихся на заключительной стадии звездной эволюции и развивающихся к планетарной туманности.

Темные туманности

Туманности представляют собой участки межзвездной среды, выделяющиеся своим излучением или поглощением на общем фоне неба. Темные туманности представляют собой плотные (обычно молекулярные) облака межзвездного газа и пыли, непрозрачные из-за межзвездного поглощения света пылью. Иногда темные туманности видны прямо на фоне Млечного Пути. Таковы, например, туманность "Угольный Мешок" и многочисленные глобулы. В тех частях, которые полупрозрачны для оптического диапазона, хорошо заметна волокнистая структура. Волокна и общая вытянутость темных туманностей связаны с наличием в них магнитных полей, затрудняющих движение вещества поперек силовых магнитных линий.

Светлые туманности

Отражательные туманности являются газо-пылевыми облаками, подсвеченными звездами. Примером такой туманности являются Плеяды. Свет от звезд рассеивается межзвездной пылью. Большинство отражательных туманностей расположено вблизи плоскости Галактики. Некоторые отражательные туманности имеют кометообразный вид и называются кометарными. В голове такой туманности находится обычно переменная звезда типа Т Тельца, освещающая туманность. Редкой разновидностью отражательной туманности является "световое эхо", наблюдавшееся после вспышки Новой 1901 г. в созвездии Персея. Яркая вспышка звезды подсветила пыль, и несколько лет наблюдалась слабая туманность, распространявшаяся во все стороны со скоростью света. На изображении слева выше показано звездное скопление "Плеяды" со звездами, окруженными светлыми туманностями. Если звезда, которая находится в туманности или рядом с ней достаточно горячая, то она ионизует газ в туманности. Тогда газ начинает светиться, а туманность называется самосветящаяся или туманность, ионизованная излучением.

Самыми яркими и распространенными, а также наиболее изученными представителями таких туманностей являются зоны ионизованного водорода H II. Существуют также зоны C II, в которых углерод почти полностью ионизован светом центральных звезд. Зоны С II обычно расположены вокруг зон H II в областях нейтрального водорода H I. Они как бы вложены друг в друга. Остатки Сверхновых (см. изображение справа выше), оболочки Новых и звездный ветер также являются самосветящимися туманностями, так как газ нагрет в них до многих млн. К (за фронтом ударной волны). Звезды Вольфа-Райе создают очень мощный звездный ветер. В результате вокруг них появляются туманности размером в несколько парсек с яркими волокнами. Аналогичны туманности вокруг ярких горячих звезд спектральных классов О - звезд Of, также обладающих сильным звездным ветром.


Планетарные туманности

К середине XIX века появилась возможность дать серьезное доказательство, что эти туманности принадлежат к самостоятельному классу объектов. Появился спектроскоп. Йозеф Фраунгофер обнаружил, что Солнце излучает непрерывный спектр, испещренный резкими линиями поглощения. Оказалось, что и спектра планет имеют многие характерные черты солнечного спектра. У звезд также обнаружился непрерывный спектр, однако, каждая из них имела свой собственный набор линий поглощения. Уильям Хеггинс (1824-1910) был первым, кто исследовал спектр планетарной туманности. Это была яркая туманность в созвездии Дракона NGC 6543. До этого Хеггинс в течение целого года наблюдал спектры звезд, однако спектр NGC 6543 оказался совершенно неожиданным. Ученый обнаружил лишь одну единственную, яркую линию. В то же время яркая Туманность Андромеды показала непрерывный спектр, характерный для спектров звезд. Теперь мы знаем, что Туманность Андромеды на самом деле является галактикой, а следовательно, состоит из множества звезд. В 1865 году тот же Хеггинс, применив спектроскоп более высокой разрешающей способности, обнаружил, что эта "единственная" яркая линия состоит из трех отдельных линий. Одну из них удалось отождествить с бальмеровской линией водорода Hb, но две другие, более длинноволновые и более интенсивные остались не узнанными. Их приписали новому элементу - небулию. Только в 1927 году этот элемент был отождествлен с ионом кислорода . А линии в спектрах планетарных туманностей до сих пор так и называются - небулярные.

Затем возникла проблема с центральными звездами планетарных туманностей. Они очень горячие, что ставило планетарные туманности в ряд перед звездами ранних спектральных классов. Однако исследования пространственных скоростей приводили к прямо противоположному результату. Вот данные по пространственным скоростям различных объектов: диффузные туманности - мала (0 км/с), звезды класса В - 12 км/с, звезды класса A - 21 км/с, звезды класса F - 29 км/с, звезды класса G - 34 км/с, звезды класса K - 12 км/с, звезды класса M - 12 км/с, планетарные туманности - 77 км/с. Только когда открыли расширение планетарных туманностей, появилась возможность вычислить их возраст. Он оказался равным примерно 10 000 лет. Это было первым свидетельством, что возможно, большинство звезд проходит через стадию планетарной туманности. Таким образом, планетарная туманность - это система из звезды, называемой ядром туманности, и симметрично окружающей ее светящейся газовой оболочки (иногда, несколько оболочек). Оболочка туманности и ее ядро генетически связаны. Для планетарных туманностей свойственен эмиссионный спектр, отличающийся от спектров излучения галактических диффузных туманностей большой степенью возбуждения атомов. Кроме линий двукратно ионизованного кислорода , наблюдаются линии C IV, O V и даже O VI. Масса оболочки планетарной туманности примерно 0,1 массы Солнца. Все многообразие форм планетарных туманностей, вероятно, возникает из-за проекции их основной тороидальной структуры на небесную сферу под разными углами.

Оболочки планетарных туманностей расширяются в окружающее пространство со скоростями 20 - 40 км/с под действием внутреннего давления горячего газа. По мере расширения оболочка становится разреженней, ее свечение ослабевает, и в конце концов она становится невидимой. Ядра планетарных туманностей представляют собой горячие звезды ранних спектральных классов, претерпевающие значительные изменения за время жизни туманности. Температуры их обычно составляют 50 - 100 тыс. К. Ядра старых планетарных туманностей близки к белым карликам, но вместе с тем значительно ярче и горячее типичных объектов такого рода. Среди ядер встречаются и двойные звезды. Образование планетарной туманности является одной из стадий эволюции большинства звезд. Рассматривая этот процесс, удобно разделить его на две части: 1) от момента выброса туманности до той стадии, когда источники энергии звезды в основном исчерпаны; 2) эволюция центральной звезды от главной последовательности до выброса туманности. Эволюция после выброса туманности довольно хорошо изучена как наблюдательно, так и теоретически. Более ранние стадии гораздо менее понятны. Особенно стадия между красным гигантом и выбросом туманности.

Центральные звезды самой низкой светимости обычно окружены самыми большими, а потому самыми старыми туманностями. На изображении слева представлена планетарная туманность Гантель М 27 в созвездии Лисички. Вспомним немного теорию эволюции звезд. При удалении от главной последовательности важнейшая стадия эволюции звезды начинается после того, как водород в центральных областях полностью выгорит. Тогда центральные области звезды начинают сжиматься, освобождая гравитационную энергию. В это время область, в которой водород еще горит, начинает продвигаться наружу. Возникает конвекция. В звезде начинаются драматические перемены, когда масса изотермического гелиевого ядра составляет 10-13% массы звезды. Центральные области начинают быстро сжиматься, а оболочка звезды расширяется - звезда становится гигантом, перемещаясь вдоль ветви красных гигантов. Ядро, сжимаясь, разогревается. В конце концов, в нем начинается горение гелия. Через некоторый период времени истощаются и запасы гелия. Тогда начинается второе "восхождение" звезды вдоль ветви красных гигантов. Звездное ядро, состоящее из углерода и кислорода, быстро сжимается, а оболочка расширяется до гигантских размеров. Такая звезда называется звездой асимптотической ветви гигантов. На этой стадии звезды имеют два слоевых источника горения - водородный и гелиевый и начинают пульсировать.

Остальная часть эволюционного пути изучена гораздо хуже. У звезд с массами, превосходящими 8-10 масс Солнца углерод в ядре в конце концов загорается. Звезды становятся сверхгигантами и продолжают эволюционировать, пока не образуется ядро из элементов "железного пика" (никель, марганец, железо). Это центральное ядро, вероятно, коллапсирует и образует нейтронную звезду, а оболочка сбрасывается в виде вспышки Сверхновой. Ясно, что планетарные туманности образуются из звезд с массами меньше 8-10 масс Солнца. Два факта позволяют предполагать, что родоначальниками планетарных туманностей являются красные гиганты. Во-первых, звезды асимптотической ветви физически очень сходны с планетарными туманностями. Ядро красного гиганта по массе и размерам очень напоминает центральную звезду планетарной туманности, если удалить протяженную разреженную атмосферу красного гиганта. Во-вторых, если туманность сброшена звездой, то она должна иметь минимальную скорость, достаточную чтобы уйти из гравитационного поля. Расчеты показывают, что только для красных гигантов эта скорость сравнима со скоростями расширения оболочек планетарных туманностей (10-40 км/с). При этом масса звезды оценивается в 1 массу Солнца, а радиус лежит в пределах 100-200 радиусов Солнца (типичный красный гигант). В заключение отметим, что наиболее вероятными кандидатами на роль родоначальников планетарных туманностей являются переменные звезды типа Миры Кита. Представителями одного из переходных этапов между звездами и туманностями могут быть симбиотические звезды. И конечно нельзя обойти вниманием объект, FG Sge (на изображении справа вверху). Таким образом, большинство звезд, массы которых меньше 6-10 масс Солнца, в конце концов, становятся планетарными туманностями, На предшествующих стадиях они теряют большую часть своей первоначальной массы; остается только ядро с массой 0,4-1 масса Солнца, которое становится белым карликом. Потеря массы влияет не только на саму звезду, но и на условия в межзвездной среде и на будущие поколения звезд.

Эти загадочные объекты, смотрящие на людей из глубин космоса, давным-давно привлекали внимание тех, для кого наблюдения за небом стало частью жизни. Еще в каталоге древнегреческого ученого Гиппарха отмечено несколько туманных объектов на звездном небе. А его коллега, Птолемей, добавил в свой каталог еще пять туманностей к уже известным. До изобретения Галилея телескопа не так уж много объектов этого типа можно было увидеть невооруженным глазом. Но уже в 1610 году направленный на небо примитивный телескоп конструкции Галилея обнаружил там туманность Ориона. Еще через два года была открыта туманность Андромеды. И с тех пор по мере совершенствования телескопов начались все новые и новые открытия, приведшие со временем к выделению особого класса звездных объектов – туманностей.

Через некоторое время известных туманностей стало достаточно много для того, что бы они начали мешать поиску новых объектов, таких, как например кометы. И вот, в 1784 году французский астроном Шарль Мессье, занимавшийся как раз поиском комет, составляет первый в мире каталог космических туманностей, который был издан несколькими частями. Всего их туда вошло 110 на тот момент известных объекта этого класса.
При составлении каталога, Мессье давал им номера М1, М2 и так далее, до М110. Многие объекты этого каталога до сих пор имеют такое обозначение.

Однако, в те времена не было известно, что природа различных туманностей совершенно отличается друг от друга. Для астрономов это были просто туманные пятна, отличающиеся от обычных звезд.
Теперь же, благодаря достижениям астрономии, мы знаем о туманностях несравнимо больше. Что же представляют из себя эти загадочные объекты, и чем они отличаются друг от друга?

Прежде всего, многие наверное удивятся, когда узнают, что существуют не только светлые туманности. Сегодня известно множество объектов, называющихся темные туманности. Они представляют из себя плотные облака межзвездной пыли и газа, которые являются непрозрачными для света из-за его поглощения содержащейся в туманности пылью. Такие туманности отчетливо выделяются на фоне звездного неба или на фоне светлых туманностей. Классическим примером такой туманности является туманность Угольный Мешок в созвездии Южного Креста. Нередко бывает, что такая туманность служит материалом для образования в ее области новых звезд из-за большого количества межзвездного вещества.

Что касается светлых туманностей, то они тоже содержат и газ и пыль. Однако, причиной свечения такой туманности могут являться несколько факторов. Во-первых, это наличие внутри такой туманности или же рядом с ней звезды. В этом случае, если звезда не слишком горячая, то туманность светится за счет света, отражаемого и рассеиваемого входящей в ее состав космической пылью. Такая туманность называется отражательной туманностью. Классический пример подобного объекта – известное, пожалуй, всем, скопление Плеяды.

Другим видом светлой туманности являются ионизированные туманности. Такие туманности образуются в результате сильной ионизации входящего в их состав межзвездного газа. Причиной этому является излучение близкой горячей звезды или же другого объекта, являющегося источником мощного излучения, в том числе ультрафиолетового и рентгеновского. Так, яркие ионизированные туманности имеются в ядрах активных галактик и квазаров. Ряд таких туманностей, известных так же под названием Область H II, являются местами активного звездообразования. Образующиеся внутри нее горячие молодые звезды ионизируют туманность мощным ультрафиолетовым излучением.

Еще одним видом космических туманностей являются планетарные туманности. Эти объекты возникают в результате сброса внешней оболочки звездой-гигантом, массой от 2.5 до 8 солнечных. Такой процесс происходит при вспышке Новой звезды (не путать со взрывом сверхновой, это разные вещи!), когда часть звездного вещества выбрасывается в космическое пространство. Такие туманности имеют форму кольца или диска, а так же сферы (для Новых звезд).

Взрыв Сверхновой так же оставляет после себя светящуюся туманность, разогретую в процессе взрыва до нескольких миллионов градусов. Это гораздо более яркие светлые туманности, чем обычные планетарные туманности. Срок их жизни по космическим меркам совсем небольшой – не более 10 тысяч лет, после чего они сливаются с окружающим межзвездным пространством.

Более редким и экзотическим видом туманностей являются туманности вокруг звезд Вольфа-Райе. Это звезды с очень высокой температурой и светимостью, обладающие мощным излучением и скоростью истечения звездного вещества со своей поверхности (свыше 1000 километров в секунду). Такие звезды ионизируют межзвездный газ в радиусе нескольких парсек. Однако, звезд такого типа известно очень немного (в нашей Галактике – чуть более 230), поэтому и туманностей такого типа соответственно мало.

Как видите, наши знания о космических туманностях сегодня достаточно обширны, хотя, конечно же, есть еще очень много неясного в процессах их образования и жизни. Однако, это совсем не мешает нам так же любоваться их красотой, как это делали наши менее осведомленные предки.

Кроме звезд, в телескоп видны слабо светящиеся небольшие туманные пятна. Они получили название туманностей. Некоторые из них имеют довольно отчетливые очертания. В числе их наблюдаются немногочисленные так называемые планетарные туманности . Внутри каждой из них, в центре, всегда есть одна очень горячая звезда. Такие туманности состоят из разреженного газа, который удаляется во все стороны от центральной звезды со скоростью десятков километров в секунду. Если газовая оболочка вокруг звезды внутри полая, то туманность имеет вид кольца, как, например, туманность в созвездии Лиры. Но многие туманности не имеют определенной формы. Они похожи на клочковатый туман, растекающийся струями в разные стороны. Эти туманности называются диффузными. Их известно несколько сот.

Наиболее замечательной из них является туманность в Орионе. Она видима даже в слабый телескоп, а иногда и невооруженным глазом. В этой огромной диффузной туманности , как и в планетарных туманностях, светятся разреженные газы под действием света горячих звезд, находящихся внутри туманности . Иногда яркая звезда освещает встретившееся с ней облако пылинок, по размерам сравнимых с частицами дыма. Тогда в телескоп мы видим тоже светлую диффузную туманность, но уже не газовую, а пылевую. Множество туманностей в XIX в. открыли Вильям Гершель и его сын Джон, работавший, в частности, в Южной Африке, чтобы наблюдать там южное небо.

В XX столетии много газовых туманностей открыл и изучал в Крыму российский ученый Г. А. Шайн. В большинстве случаев пылевые туманности не светятся, так как поблизости обычно не бывает звезд, способных их ярко осветить. Эти темные пылевые туманности , нередко с отчетливо обрисованными краями, обнаруживаются, как прогалины, в светлых областях Млечного Пути. Такие туманности , как Конская голова (в Орионе, близ светлой диффузной туманности ), представляя собой скопления мельчайшей пыли, поглощают свет находящихся за ними звезд


Арабский астроном Ас-Суфи, живший в X веке н.э., описывает "маленькое небесное облачно", легко различимое в темные ночи вблизи звезды n (ню) созвездия Андромеды. В Европе на него обратили внимание только в начале XVII в. Современник Галилея и его соратник в первых телескопических наблюдениях неба астроном Симон Мариус в декабре 1612 г. впервые направил телескоп на эту странную небесную туманность. "Яркость ее, - пишет Мариус, - возрастает по мере приближения к середине. Она походит на зажженную свечу, если на нее смотреть сквозь прозрачную роговую пластинку".


На фотографиях, полученных наземными телескопами, туманность Menzel 3, или Mz3, напоминает своей формой муравья, поэтому ее неофициальное название - туманность Муравей. В 10 раз более детальные снимки туманности, полученные космическим телескопом Hubble, показывают строение "муравья" - выбросы вещества заканчивающей свою эволюцию Солнце-подобной звезды. Эти изображения туманности Mz3, а также еще одной планетарной туманности, также представляющей собой последние стадии жизни звезды, подобной Солнцу, показывают, что и наше светило, возможно, ожидают более сложные и интересные процессы, чем предполагалось до сих пор теорией эволюции таких звезд.

Спектральный анализ. Чтобы проанализировать спектральный состав излучения туманности, часто используют бесщелевой спектрограф. В простейшем случае вблизи фокуса телескопа помещают вогнутую линзу, превращающую сходящийся пучок света в параллельный. Его направляют на призму или дифракционную решетку, расщепляющую пучок в спектр, а затем выпуклой линзой фокусируют свет на фотопластинке, получая при этом не одно изображение объекта, а несколько - по числу линий излучения в его спектре. Однако изображение центральной звезды при этом растягивается в линию, поскольку у нее непрерывный спектр.
В спектрах газовых туманностей представлены линии всех важнейших элементов: водорода, гелия, азота, кислорода, неона, серы и аргона. Причем, как и везде во Вселенной, водорода и гелия оказывается гораздо больше остальных.
Возбуждение атомов водорода и гелия в туманности происходит не так, как в лабораторной газоразрядной трубке, где поток быстрых электронов, бомбардируя атомы, переводит их в более высокое энергетическое состояние, после чего атом возвращается в нормальное состояние, излучая свет. В туманности нет таких энергичных электронов, которые могли бы своим ударом возбудить атом, т.е. «забросить» его электроны на более высокие орбиты. В туманности происходит «фотоионизация» атомов ультрафиолетовым излучением центральной звезды, т.е. энергии пришедшего кванта достаточно, чтобы вообще оторвать электрон от атома и пустить его в «свободный полет». В среднем проходит 10 лет, пока свободный электрон встретится с ионом, и они вновь объединятся (рекомбинируют) в нейтральный атом, выделив энергию связи в виде квантов света. Рекомбинационные линии излучения наблюдаются в радио-, оптическом и инфракрасном диапазонах спектра.
Наиболее сильные линии излучения у планетарных туманностей принадлежат атомам кислорода, потерявшим один или два электрона, а также азоту, аргону, сере и неону. Причем они излучают такие линии, которые никогда не наблюдаются в их лабораторных спектрах, а появляются только в условиях, характерных для туманностей. Эти линии называют «запрещенными». Дело в том, что атом обычно находится в возбужденном состоянии менее миллионной доли секунды, а затем переходит в нормальное состояние, излучая квант. Однако существуют некоторые уровни энергии, между которыми атом совершает переходы очень «неохотно», оставаясь в возбужденном состоянии секунды, минуты и даже часы. За это время в условиях относительно плотного лабораторного газа атом обязательно сталкивается со свободным электроном, который изменяет его энергию, и переход исключается. Но в крайне разреженной туманности возбужденный атом долго не сталкивается с другими частицами, и, наконец, совершается «запрещенный» переход. Именно поэтому впервые обнаружили запрещенные линии не физики в лабораториях, а астрономы, наблюдая туманности. Поскольку в лабораторных спектрах этих линий не было, некоторое время даже считалось, что они принадлежат неизвестному на Земле элементу. Его хотели назвать «небулий», но недоразумение вскоре прояснилось. Эти линии видны в спектрах как планетарных, так и диффузных туманностей. В спектрах таких туманностей есть и слабое непрерывное излучение, возникающее при рекомбинации электронов с ионами.
На спектрограммах туманностей, полученных со щелевым спектрографом, линии часто выглядят изломанными и расщепленными. Это - эффект Доплера, указывающий на относительное движение частей туманности. Планетарные туманности обычно расширяются радиально от центральной звезды со скоростью 20-40 км/с. Оболочки сверхновых расширяются гораздо быстрее, возбуждая перед собой ударную волну. У диффузных туманностей вместо общего расширения обычно наблюдается турбулентное (хаотическое) движение отдельных частей.
Важная особенность некоторых планетарных туманностей - стратификация их монохроматического излучения. Например, излучение однократно ионизованного атомарного кислорода (потерявшего один электрон) наблюдается в обширной области, на большом расстоянии от центральной звезды, а двукратно ионизованные (т.е. потерявшие два электрона) кислород и неон видны лишь во внутренней части туманности, тогда как четырехкратно ионизованный неон или кислород заметны лишь в центральной ее части. Этот факт объясняется тем, что необходимые для более сильной ионизации атомов энергичные фотоны не достигают внешних областей туманности, а поглощаются газом уже недалеко от звезды.
По химическому составу планетарные туманности весьма разнообразны: элементы, синтезированные в недрах звезды, у некоторых из них оказались подмешанными к веществу сброшенной оболочки, а у других - нет. Еще сложнее состав остатков сверхновых: сброшенное звездой вещество в значительной степени смешано с межзвездным газом и, кроме того, разные фрагменты одного остатка иногда имеют различный химический состав (как у Кассиопеи А). Вероятно, это вещество выбрасывается с различных глубин звезды, что дает возможность проверять теорию эволюции звезд и взрыва сверхновых.