Меню
Бесплатно
Главная  /  Здоровье  /  Солнечные пятна и факелы. Грануляция фотосферы. Солнечные пятна

Солнечные пятна и факелы. Грануляция фотосферы. Солнечные пятна

Для понимания физической природы процессов, протекающих на Солнце, важно установить причины более низкой температуры пятен по сравнению с фотосферой, роль магнитных явлений в их развитии и существовании и механизм 11 (22)-летней цикличности солнечной активности.

Таблица 6. Модель солнечного пятна по Мишару (1953). В каждой двойной колонке первая относится к фотосфере, вторая к пятну. Давление выражено в дин/см2. Неуверенные значения поставлены в скобки. Аргументом выбрана оптическая глубина при .

Температура пятен, как сказано было ранее, значительно ниже температуры фотосферы, что подтверждается их относительной темнотой и гораздо более низкой степенью ионизации и возбуждения, как это следует из их спектров. Уменьшение числа электронов в пятнах вызывает уменьшение непрозрачности солнечного вещества (в первую очередь за счет сильного уменьшения числа ионов ). Таким образом, в пятнах мы «заглядываем» в большие геометрические глубины, чем в фотосфере. Однако эти глубины все равно крайне незначительны, как это видно из таблицы 6.

Таким образом, учитывая эффект Вильсона, видимое пятно можно уподобить мелкой тарелке. Проследить простирание пятна в глубину очень трудно, так как оно зависит от распределения магнитного поля с глубиной. Действительно, как видно из таблицы 6, давление на одном и том же уровне в пятне приблизительно на дин/см2 (около 0,2 атм) меньше, чем в соседней фотосфере. Равновесие может поддерживаться только при добавочном давлении, которое создается магнитным полем [см. § 2, формулу (2.26)]. Давление равно и эта величина будет равняться дин/см2, если . Как раз такое магнитное поле обычно для верхнего уровня пятен. Следующие численные характеристики типичны для среднего солнечного пятна:

Ввиду большого масштаба движений в солнечной фотосфере и под ней затухание магнитных полей на Солнце протекает исключительно медленно (нужны сотни лет). По этой причине активные области Солнца имеют длительное существование и магнитные поля то погружаются в глубь фотосферы, то всплывают на ее поверхность. Вблизи поверхности, где плотность вещества становится малой, условие равенства кинетической энергии и энергии магнитного поля нарушается в пользу последней, и конвекция оказывается сильно подавленной, между тем нормально конвекционные потоки несут с собой тепло. Кроме того, на субфотосфер ном уровне пятен конвективный приток тепла с периферии также запрещен, так как он протекает поперек магнитных силовых линий. Именно отсутствие конвекции является причиной низкой температуры пятен. Впрочем, это не единственная причина. Возможен также унос тепла из тени магнитогидродинамическими волнами.

Длительно существующие магнитные поля на Солнце связаны, по-видимому, с существованием больших циркуляционных движений в конвективной зоне Солнца до глубины в несколько десятков тысяч километров, возникающих вследствие неоднородности вращения Солнца. Циркуляция плазмы порождает магнитные вихри, и когда они выходят на поверхность, то появляются биполярные группы, простые или сложные, видимым выражением которых становятся пятна (рис. 40). Одновременно на Солнце имеется много таких вихрей на различных меридианах. Вероятно, в течение цикла они перемещаются к экватору, в то время как новые вихри зарождаются у полюсов и приходят на смену старым. Естественно, что направление вихрей различно в обоих полушариях. Скорость, с которой спускаются к экватору большие вихри, определяет продолжительность цикла солнечной активности.

22-летняя цикличность остается непонятной. Конечно, магнитные силовые линии выходят и далеко за поверхность Солнца, в хромосферу и корону, но они должны быть выносимы определенными массами вещества. Мы увидим дальше признаки вмешательства магнитных сил в хромосферные и корональные процессы.

Рис. 40. Магнитные области на Солнце (схема)

Небольшие магнитные поля, подобные тем, которые существуют на периферии пятен, вместо того, чтобы подавлять конвекцию, усиливают ее. Это происходит потому, что слабое поле, не будучи в состоянии помешать энергичной конвекции, подавляет сравнительно слабую турбулентность и тем самым уменьшает вязкость газа что ускоряет конвективные движения. Выходя в верхние слои фотосферы, избыточный за счет конвекции поток тепла нагревает газ, и потому вокруг пятен наблюдаются факелы, а над факелами - флоккулы, кальциевые и водородные. Граница кальциевых флоккул определяет в целом границу активной области, водородные же флоккулы теснятся ближе к пятну - туда, где магнитное поле несколько сильнее: 10-15 Э. Возможно, что петлеобразная форма «выпирающих» магнитных силовых линий (рис. 41) определяет продвижение газовых потоков (вдоль силовых линий), что согласуется с наблюдаемым при помощи лучевых скоростей явлением втекания вещества внутрь пятна на большой высоте.

Рис. 41. Выход магнитного поля на поверхность Солнца (схема)

Хотя в неактивных областях Солнца магнитное поле имеет напряженность 1-2 Э, в отдельных местах, небольших по размерам, оно может достигать 100 Э. В тех же местах в фотосфере наблюдаются тогда небольшие яркие узлы.

Более высокая, чем окружающая, температура вместе с магнитным полем порождает перевес давления над окружающим веществом, так что узел должен быстро рассеяться, а для длительного его существования необходим приток газов извне, который может осуществиться, если основание узла в фотосфере холоднее, а давление ниже, чем в окружающей среде.

Более детальную картину горизонтальных движений на разных уровнях солнечной атмосферы в связи с тонкой структурой магнитных полей дают модифицированные спектрогелиографические наблюдения по методу Лейтона. Метод этот состоит в том, что одновременно получают спектрогелиографические крупномасштабные изображения свободного от пятен участка Солнца в лучах коротко- и длинноволнового крыла той или иной спектральной линии. Как уже говорилось выше (с. 47), удаляясь от центра линии, мы наблюдаем все более глубокие слои атмосферы Солнца, между тем как правое и левое крылья линии соответствуют в одном случае преимущественно приближающимся, а в другом - удаляющимся газовым массам. Сопоставление обеих спектрогелиограмм выявляет на поверхности Солнца потоки, движущиеся к наблюдателю и от него. Оказалось, что они локализуются в пределах ячеек поперечником около 30 тыс. км, так что в каждой ячейке имеется систематическое движение газовых масс от центра к периферии. Эти ячейки получили название супергранул. Они гораздо более долговечны, чем обычные гранулы, - их средняя продолжительность жизни составляет 40 часов. Они имеют угловатую форму, похожую на многоугольники.

Супергрануляция отражает явление конвекции на Солнце в гораздо большем масштабе, чем грануляция, захватывая не только большие площади, но и большие глубины. По условиям наблюдений (в крыльях различных линий) удается проследить эту конвекцию лишь в верхних слоях солнечной фотосферы. Наблюдаемая на -спектрогелиограммах ячеистая сетка относится уже к верхней хромосфере и не совпадает с сеткой супергрануляции. Наоборот, явление гранул, наблюдаемое в интегральном свете, относится к несколько большим глубинам, чем наблюдаемые области супергрануляции. Но как по распределению скоростей в супергранулах, так и по изучению движения индивидуальных гранул все перемещения солнечной плазмы идут к границам супергранул, унося с собой и магнитное поле. Здесь, встречаясь с подобным же потоком соседней супергранулы, плазма уходит вглубь, чем и обеспечивается постоянная циркуляция ее. Магнитное поле при этом остается (так как движение плазмы происходит вдоль силовых линий), и здесь его напряженность достигает значений в несколько десятков и даже сотен эрстед, а в углах ячеек даже до 1,5-2 тыс. эрстед, как это видно из наблюдений эффекта Зеемана. Таким образом, у каждой супергранулы имеется ограничивающий и охраняющий ее магнитный барьер. Но кроме этого граница супергранулы обладает более высокой температурой, чем ее центр, примерно на 2-4 %, что следует из возрастания яркости тех спектральных линий, которые усиливаются в пятнах, т. е. линий низкого возбуждения. Возрастание яркости в линиях свидетельствует об уменьшении числа поглощающих атомов, которое в данном случае происходит из-за возрастания возбуждения или ионизации.

Допускается, что в глубине фотосферы супергранулы частично сливаются, так как, за исключением углов ячеек, стенки супергранул представляют довольно слабый магнитный барьер при возрастающей плотности газов.

Влияние супер грануляционной структуры больше простирается вверх. При наблюдениях вблизи солнечного края супергранулы совпадают с ячейками факелов. Здесь, в фотосфере, только в этом случае супергрануляция может быть видима. Наоборот, в хромосфере супергрануляция проявляет себя той сеткой флоккул, которая отчетливо выступает на спектрогелиограммах в лучах CaII К. Эта сетка хорошо видна и на заатмосферных фотографиях Солнца в лучах ультрафиолетовых линий, перечисленных на с. 72, излучающих над хромосферой в переходном слое, но исчезает в лучах корональных линий, как, например, линии . Надо думать, что так далеко простираются и магнитные поля супер гранул, их окаймляющие. Только на корональных высотах они приобретают упорядоченный вид: магнитные линии идут радиально, определяя каналы, по которым движутся теплопроводящие электроны. Их движение, таким образом, стеснено, теплопроводность переходного слоя уменьшается и толщина его становится больше, чем при отсутствии поля. Разумеется, все сказанное относится к спокойным хромосфере и короне.

Солнечные пятна наблюдаются как области пониженной светимости на поверхности Солнца. Температура плазмы в центре солнечного пятна понижена до примерно 3700 K по сравнению с температурой 5700 K в окружающей фотосфере Солнца . Хотя отдельные солнечные пятна живут обычно не более нескольких дней, самые большие из них могут существовать на поверхности Солнца в течение нескольких недель. Солнечные пятна являются областями очень сильного магнитного поля , величина которого превышает величину магнитного поля Земли в тысячи раз. Чаще всего пятна формируются в виде двух близко расположенных групп, магнитное поле которых имеет разную полярность. Поле одной группы имеет положительную (или северную) полярность, а поле другой группы - отрицательную (или южную). Это поле наиболее сильное в самой темной части солнечного пятна - его тени. Линии поля здесь уходят в поверхность Солнца почти вертикально. В более светлой части пятна (его полутени) поле имеет меньшую величину, и его линии расположены более горизонтально. Солнечные пятна представляют огромный интерес для исследования, поскольку являются областями самых мощных солнечных вспышек , оказывающих наиболее сильное влияние на Землю.

Факелы

Гранулы - это малые (размером около 1000 км) элементы, похожие на ячейки неправильной формы, которые как сетка покрывают всю фотосферу Солнца , за исключением солнечных пятен . Эти поверхностные элементы являются верхней частью уходящих вглубь Солнца конвективных ячеек. В центре этих ячеек горячее вещество поднимается из внутренних слоев Солнца , затем растекается горизонтально по поверхности, охлаждается и опускается вниз на темных внешних границах ячейки. Отдельные гранулы живут совсем недолго, всего около 20 минут. В результате сетка грануляции постоянно меняет свой вид. Это изменение хорошо видно в фильме (470 kB MPEG) , полученом на Вакуумном Солнечном Телескопе в Швеции (Swedish Vacuum Solar Telescope). Потоки внутри гранул могут достигать сверхзвуковых скоростей более 7 км в секунду и производить звуковые "удары", которые приводят к формированию волн на поверхности Солнца .

Супергранулы

Супергранулы имеют конвективную природу, схожую с природой обычных гранул, но обладают заметно большими размерами (около 35,000 км). В отличие от гранул, которые видны на фотосфере обычным глазом, супергранулы чаще всего обнаруживают себя по эффекту Доплера, в соответствиии с которым излучение, поступающее от вещества, движущегося к нам, смещается по оси длин волн в голубую сторону, а излучение вещества, движущегося от нас, смещается в красную сторону. Супергранулы также покрывают всю поверхность Солнца и непрерывно эволюционируют. Отдельные супергранулы могут жить один или два дня и иметь среднюю скорость течения около 0.5 км в секунду. Конвективные потоки плазмы внутри супергранул сгребают линии магнитного поля к краям ячейки, где это поле формирует хромосферную сетку.

Как, например, в середине прошлого тысячелетия. Каждый обитатель нашей планеты в курсе, что на главном источнике тепла и света находятся небольшие потемнения, которые сложно рассмотреть без специальных приспособлений. Но далеко не всем известен факт, что именно они приводят к которые могут сильно отразиться на магнитном поле Земли.

Определение

Говоря простым языком, солнечные пятна - это тёмные участки, образующиеся на поверхности Солнца. Ошибочно полагать, что они не излучают яркий свет, однако по сравнению с остальной фотосферой они действительно гораздо мрачнее. Их основной характеристикой является пониженная температура. Таким образом, солнечные пятна на Солнце холоднее примерно на 1500 Кельвинов, чем другие окружающие их участки. По сути, они представляют собой те самые области, сквозь которые магнитные поля выходят на поверхность. Благодаря этому явлению можно говорить о таком процессе, как магнитная активность. Соответственно, если пятен мало, то это именуется спокойным периодом, а когда их много, то такой период будет называться активным. Во время последнего свечение Солнца чуть более яркое из-за факелов и флоккулов, расположенных вокруг тёмных участков.

Изучение

Наблюдение солнечных пятен ведется давно, оно своими корнями уходит ещё в эпоху до нашей эры. Так, Теофраст Аквинский ещё в IV веке до н. э. в своих работах упоминал об их существовании. Первая зарисовка потемнений на поверхности главной звезды была обнаружена в 1128 году, принадлежит она Джону Ворчестеру. Помимо этого, в древнерусских произведениях XIV века упоминается о чёрных солнечных вкраплениях. Наука стремительно начала заниматься их изучением в 1600-х годах. Большинство учёных того периода придерживались версии, что солнечные пятна - это движущиеся вокруг оси Солнца планеты. Но после изобретения Галилеем телескопа этот миф был развеян. Ему первому удалось выяснить, что пятна являются неотъемлемыми от самой солнечной структуры. Это событие породило мощную волну исследований и наблюдений, которые не прекращаются с тех самых пор. Современное изучение поражает воображение своими масштабами. В течение 400 лет прогресс в этой области сделался ощутимым, и сейчас Бельгийская королевская обсерватория занимается подсчётом количества солнечных пятен, но раскрытие всех граней этого космического явления всё ещё продолжается.

Появление

Ещё в школе детям рассказывают о существовании магнитного поля, однако обычно упоминают лишь полоидальный компонент. Но теория солнечных пятен предполагает изучение также тороидального элемента, естественно, речь уже идёт о магнитном поле Солнца. У Земли его невозможно вычислить, так как оно не появляется на поверхности. Другая ситуация обстоит с небесным светилом. При совокупности определённых условий магнитная трубка всплывает наружу сквозь фотосферу. Как вы догадались, этот выброс приводит к тому, что на поверхности образуются солнечные пятна. Чаще всего это происходит массово, именно поэтому наиболее распространены групповые скопления пятен.

Свойства

В среднем достигает 6000 К, в то время как у пятен она составляет около 4000 К. Однако это не мешает им по-прежнему производить мощное количество света. Солнечные пятна и активные области, то есть группы пятен, имеют разные сроки существования. Первые живут от пары дней до нескольких недель. А вот последние куда более живучие и могут оставаться в фотосфере на протяжении месяцев. Что касается структуры каждого отдельного пятна, то она представляется непростой. Центральная его часть называется тенью, которая внешне выглядит однотонной. В свою очередь, она окружена полутенью, отличающейся своей изменчивостью. В результате соприкосновения холодной плазмы и магнитной на ней заметны колебания вещества. Размеры солнечных пятен, а также их количество в группах может быть самым разнообразным.

Циклы солнечной активности

Всем известно, что уровень постоянно меняется. Это положение привело к возникновению понятия 11-летнего цикла. Солнечные пятна, их появление и число очень тесно взаимосвязаны с этим явлением. Однако этот вопрос остаётся противоречивым, так как один цикл может варьироваться от 9 до 14 лет, а также уровень активности неустанно изменяется от столетия к столетию. Таким образом, могут быть периоды некого затишья, когда более одного года пятна практически отсутствуют. Но может случиться и обратное, когда их количество считается аномальным. Раньше отсчёт начала цикла начинался с момента минимальной солнечной активности. Но с появлением усовершенствованных технологий исчисление ведётся с того момента, когда изменяется полярность пятен. Данные о прошлых солнечных активностях доступны для изучения, однако они вряд ли могут стать самым верным помощником в прогнозировании будущего, ведь природа Солнца весьма непредсказуема.

Воздействие на планету

Не секрет, что на Солнце тесным образом взаимодействуют с нашей повседневной жизнью. Земля постоянно подвергается атакам различных раздражителей извне. От их разрушительного воздействия планета защищена при помощи магнитосферы и атмосферы. Но, к сожалению, они не способны противостоять ему полностью. Таким образом, из строя могут быть выведены спутники, нарушается радиосвязь, а космонавты подвержены повышенной опасности. Помимо этого, излучение влияет на климатические изменения и даже на внешность человека. Существует такое явление, как солнечные пятна на теле, появляющиеся под воздействием ультрафиолета.

Этот вопрос ещё не изучен должным образом, как и влияние солнечных пятен на повседневную жизнь людей. Ещё одним явлением, зависящим от магнитных нарушений, можно назвать Магнитные бури стали одним из самых известных последствий солнечной активности. Они представляют собой ещё одно внешнее поле вокруг Земли, которое параллельно постоянному. Современные учёные даже связывают повышенную смертность, а также обострение заболеваний сердечно-сосудистой системы с появлением этого самого магнитного поля. А в народе это даже постепенно начало превращаться в суеверие.

С солнечными пятнами связано несколько занимательных и довольно поучительных историй, первые из которых дошли до нас еще из глубокой древности.

Древнегреческие астрономы считали Солнце безупречным идеальным огненным шаром, не имеющим никаких изъянов. Такая точка зрения господствовала вплоть до XVII века, во всяком случае – в Европе. А далеко на востоке китайцы, ничего не зная о представлениях эллинов, еще в I веке до нашей эры описали в своих летописях «птиц», летающих перед Солнцем. Европейцы же о солнечных пятнах предпочитали вообще не думать, поскольку полагали, что если религия и философия объявляют Солнце совершенным, то «пятна» эти могут быть либо парами, проходящими между Землей и Солнцем, либо планетами.

В царствование Карла Великого (VIII в.) население Франции в течение восьми дней видело на Солнце большое черное пятно. Ученые того времени заявили, что это планета Меркурий. Их догадка была не такой уж глупой, поскольку Меркурий и в самом деле иногда проходит по диску Солнца, правда, он пересекает его всего за несколько часов.

С изобретением телескопа солнечные пятна поместили на поверхность Солнца, то есть туда, где они действительно находятся. Первое сообщение о результатах их наблюдений опубликовал в 1611 году немецкий астроном Иоганн Фабрициус. Примерно в то же самое время Солнце наблюдал в телескоп профессор математики (а по совместительству – иезуит) Кристоф Шейнер, который ввиду своей принадлежности ко всесильному Ордену преодолеть стену аристотелевского диктата о незапятнанности Солнца так и не смог. Получив от своего церковного начальства заверения в том, что ошибается либо его телескоп, либо его зрение, ученый, дабы не навлечь на свою голову обвинений в страшной ереси, предпочел отступить и послушно «забыл» о проведенных им исследованиях.

Менее сговорчивым оказался Галилео Галилей.

В 1612 году, комментируя наблюдения Фабрициуса в своих письмах, он подробно описал неправильную форму солнечных пятен, их возникновение, распад, перемещение по диску Солнца и, что самое главное, – подчеркнул, что пятна представляют собой явления, происходящие на поверхности Солнца, но никак не тела, обращающиеся вокруг оного.

После авторитетного заявления Галилея ученые принялись за усиленное изучение непонятной «оспы», портящей лик нашего светила. В 1613 году Иоганн Кеплер высказал предположение, что «изменчивость пятен указывает на их облачную природу, но... земные аналогии здесь мало могут помочь». В XVIII веке солнечные пятна считали темными вершинами, проглядывающими сквозь фотосферу Солнца во время «отливов» светящегося вещества. Затем появилась мысль, что солнечные пятна являются отверстиями в фотосфере. Эта догадка близка к современным представлениям, но сейчас известно, что солнечные пятна – это не дыры в фотосфере, а более холодные, хотя и достаточно яркие ее участки; они кажутся темными лишь по сравнению с окружающей чрезвычайно яркой поверхностью.

Что же касается периодичности появления солнечных пятен, то люди ставили в прямую зависимость от них бесчисленные проявления земной жизни, в первую очередь – погоду, а также голод, мор, болезни, войны, то есть, по сути дела, в этом явлении отыскивался удобный «козел отпущения», ответственный за всяческие несчастья. Так, засуху в Италии 1632 года связывали с отсутствием пятен на Солнце. В те же годы, когда лик Солнца бывал ими усеян, урожаи славились своей обильностью, цены на пшеницу понижались, а деревья росли быстрее.

В 1870 году профессор Иельского университета Элиас Лумис установил связь Магнитных бурь и числа наблюдаемых полярных сияний с периодичностью солнечных пятен, что в то время объяснить никто не мог. Долгие годы ученые оставались в полном неведении относительно того, как может Солнце, отстоящее от Земли на расстояние 150 млн. км, «трясти» ее магнитное поле и зажигать полярные сияния... Американский космолог Джордж Гамов в своей книге «Звезда, названная Солнцем» немного иронически замечает, что «число рысьих шкурок, приобретаемых Компанией Гудзонова залива, возрастает, когда на Солнце много пятен. Возможно, это происходит потому, что в такие периоды полярные сияния бывают ярче и предоставляют больше возможностей для благоприятной охоты во время долгих полярных ночей». Еще более поразительным и странным представлялось совпадение максимума солнечных пятен с французской и русской революциями, обеими мировыми войнами и корейским конфликтом.

Безусловно, между солнечными и земными явлениями существует много тонких связей. Если Солнце в состоянии стимулировать рост деревьев, то нельзя исключать вероятность того, что, как говорил Шекспир, «в деятельности людей существуют приливы» – приливы с периодичностью в 11 лет...

Выявил и убедительно обосновал наличие 11-ти и 22-летних солнечных циклов профессор А. Чижевский, опередив свое время на 50 лет и попав за это в ГУЛАГ. Он определил связь возникновения на Земле различных социальных и биологических катастроф со «скользящим» 11-летним циклом солнечной активности, который значительно усиливается через каждые 22 года. Однако стройной теории, объясняющей такую взаимозависимость, на сегодняшний день не существует. Правда, есть гипотезы. В частности, гипотеза Роберта Брейсуэла из Калифорнийского университета, который много лет изучает циклы солнечных пятен. Более или менее надежные данные о солнечных пятнах имеются приблизительно с 1800 года. На основе этих данных можно сделать вывод, что активность Солнца, измеренная «числом пятен», различна в различных циклах, то есть максимум одного 11-летнего цикла отличается от максимума следующего или предыдущего. Брейсуэл и ряд других ученых полагают, что в жизни Солнца есть и другие, более продолжительные циклы.

Так что же представляют собой солнечные пятна, которые не без основания считаются самым заметным проявлением активности? Оказывается, это промежутки между гранулами, составляющими фотосферу Солнца, только непомерно разросшиеся. По контрасту с очень яркой фотосферой пятна кажутся темными, хотя тоже светятся, то есть излучают энергию. Температура средней части пятна (самой темной и самой «холодной») около 4500°.

Солнечные пятна возникают в виде маленьких темных пор, имеющих в поперечнике около двух тысяч километров. За несколько дней пятно увеличивается в размерах и через две недели достигает своего максимального развития. Обычное солнечное пятно имеет в поперечнике 50 тыс. км, что в 4 раза больше диаметра Земли! Большое пятно может достигнуть значительно больших размеров – до 130 тысяч километров. Большие пятна «живут» около трех месяцев, рядовые – несколько дней. Каждое пятно имеет темную центральную область, называемую тенью, которая окружена сероватым облаком – полутенью – как бы волокнистого строения со следами завихрения вокруг центра пятна.

Важнейшая особенность пятен – наличие в них сильных магнитных полей, достигающий в области тени наибольшей напряженности. В целом пятно представляет собой выходящую в фотосферу трубку силовых линий магнитного поля, целиком заполняющих одну из нескольких ячеек хромосферной сетки. Верхняя часть трубки расширяется, и силовые линии в ней расходятся, как колосья в снопе.

Большей частью пятна появляются группами, изменяются, распадаются на отдельные части, исчезают. В основном пятна появляются вблизи экватора Солнца. Движение пятен на Солнце происходит с разной скоростью: чем дальше от экватора, тем скорость движения пятна меньше. Это говорит о том, что Солнце вращается не как твердое, а как газообразное тело. (Области вблизи солнечного экватора совершают полный оборот вокруг своей оси за 27 земных суток; около полярной зоны – за 34.)

Самое большое солнечное пятно

В 1947 г. наблюдалось солнечное пятно, имевшее площадь 18 млрд. км 2 .