Меню
Бесплатно
Главная  /  Сказочные герои  /  Железо: происхождение и характеристика. Валентность железа. Какая валентность у железа

Железо: происхождение и характеристика. Валентность железа. Какая валентность у железа

Железо англ. Iron, франц. Fer, нем. Eisen) - один из семи металлов древности. Весьма вероятно, что человек познакомился с железом метеоритного происхождения раньше, чем с другими металлами. Метеоритное железо обычно легко отличить от земного, так как в нем почти всегда содержится от 5 до 30% никеля, чаще всего - 7-8%. С древнейших времен железо получали из руд, залегающих почти повсеместно. Наиболее распространенны руды гематита (Fe 2 O 3 ,), бурого железняка (2Fe 2 O 3 , ЗН 2 О) и его разновидностей (болотная руда, сидерит, или шпатовое железо FeCO,), магнетита (Fe 3 0 4) и некоторые другие. Все эти руды при нагревании с углем легко восстанавливаются при сравнительно низкой температуре начиная с 500 o С. Получаемый металл имел вид вязкой губчатой массы, которую затем обрабатывали при 700-800 o С повторной проковкой.

Этимология названий железа на древних языках довольно отчетливо отражает историю знакомства наших предков с этим металлом. Многие древние народы, несомненно, познакомились с ним, как с металлом, упавшим с неба, т. е. как с метеоритным железом. Так, в древнем Египте железо имело название би-ни-пет (бенипет, коптское - бенипе), что в буквальном переводе означает небесная руда, или небесный металл. В эпоху первых династий Ур в Месопотамии железо именовали ан-бар (небесное железо). В папирусе Эберса (ранее 1500 г. до н.э.) имеются два упоминания о железе; в одном случае о нем говорится как о металле из города Кэзи (Верхний Египет), в другом - как о металле небесного изготовления (артпет). Древнегреческое название железа, так же как и северокавказское - зидо, связано с древнейшим словом, уцелевшим в латинском языке,- sidereus (звездный от Sidus - звезда, светило). На древнем и современном армянском языке железо называется еркат, что означает капнувшее (упавшее) с неба. O том, что древние люди пользовались вначале именно железом метеоритного происхождения, свидетельствуют и распространенные у некоторых народов мифы о богах или демонах, сбросивших с неба железные предметы и орудия, - плуги, топоры и пр. Интересен также факт, что к моменту открытия Америки индейцы и эскимосы Северной Америки не были знакомы со способами получения железа из руд, но умели обрабатывать метеоритное железо.

В древности и в средние века семь известных тогда металлов сопоставляли с семью планетами, что символизировало связь между металлами и небесными телами и небесное происхождение металлов. Такое сопоставление стало обычным более 2000 лет назад и постоянно встречается в литературе вплоть до XIX в. Во II в. н. э. железо сопоставлялось с Меркурием и называлось меркурием, но позднее его стали сопоставлять с Марсом и называть марс (Mars), что, в частности, подчеркивало внешнее сходство красноватой окраски Марса с красными железными рудами.

Впрочем, некоторые народы не связывали название железа с небесным происхождением металла. Так, у славянских народов железо называется по "функциональному" признаку. Русское железо (южнославянское зализо, польское zelaso, литовское gelesis и т. д.) имеет корень "лез" или "рез" (от слова лезо - лезвие). Такое словообразование прямо указывает на функцию предметов, изготовлявшихся из железа, - режущих инструментов и оружия. Приставка "же", по-видимому, смягчение более древнего "зе" или "за"; она сохранилась в начальном виде у многих славянских народов (у чехов - zelezo). Старые немецкие филологи - представители теории индоевропейского, или, как они его называли, индогерманского праязыка - стремились произвести славянские названия от немецких и санскритских корней. Например, Фик сопоставляет слово железо с санскритским ghalgha (расплавленный металл, от ghal - пылать). Но вряд ли это соответствует действительности: ведь древним людям была недоступна плавка железа. С санскритским ghalgha скорее можно сопоставить греческое название меди, но не славянское слово железо. Функциональный признак в названиях железа нашел отражение и в других языках. Так, на латинском языке наряду с обычным названием стали (chalybs), происходящим от наименования племени халибов, жившего на южном побережье Черного моря, употреблялось название acies, буквально обозначающее лезвие или острие. Это, слово в точности соответствует древнегреческому, применявшемуся в том же самом смысле. Упомянем в нескольких словах о происхождении немецкого и английского названий железа. Филологи обычно принимают, что немецкое слово Eisen имеет кельтское происхождение, так же как и английское Iron. В обоих терминах отражены кельтские названия рек (Isarno, Isarkos, Eisack), которые затем трансформировались) isarn, eisarn) и превратились в Eisen. Существуют, впрочем, и другие точки зрения. Некоторые филологи производят немецкое Eisen от кельтского isara, означающего "крепкий, сильный". Существуют также теории, утверждающие, что Eisen происходит от ayas или aes (медь), а также от Eis (лед) и т.д. Староанглийское название железа (до 1150 г.) - iren; оно употреблялось наряду с isern и isen и перешло в средние века. Современное Iron вошло в употребление после 1630 г. Заметим, что в "Алхимическом лексиконе" Руланда (1612) в качестве одного из старых названий железа приведено слово Iris, означающее "радуга" и созвучное Iron.

Ставшее международным, латинское название Ferrum принято у романских народов. Оно, вероятно, связано с греколатинским fars (быть твердым), которое происходит от санскритского bhars (твердеть). Возможно сопоставление и с ferreus, означающим у древних писателей "нечувствительный, непреклонный, крепкий, твердый, тяжкий", а также с ferre (носить). Алхимики наряду с Ferrum ynoтребляли и многие другие названия, например Iris, Sarsar, Phaulec,Mineraи др.

Железные изделия из метеоритного железа найдены в захоронениях, относящихся к очень давним временам (IV - V тысячелетиях до н.э.), в Египте и Месопотамии. Однако железный век в Египте начался лишь с ХIIв. до н. э., а в других странах еще позднее. В древнерусской литературе слово железо фигурирует в древнейших памятниках (с XI в.) под названиями желъзо, железо, жельзо.

Железо, его положение в периодической системе химических элементов Д. И. Менделеева.

В периодической таблице химических элементов Д. И. Менделеева железо Fe расположено в 4-м периоде VIII группы побочной подгруппы.

Распределение электронов по электронным слоям в атоме железа выглядит так:

В основном состоянии.

В возбужденном состоянии.

В атоме железа четыре электронных слоя. Электронами заполняется d–подуровень третьего слоя, на нём находится 6 электронов, а на четвёртом слое s–подуровне находится 2 электрона. В соединениях железо проявляет степени окисления +2 и +3.

Известны также соединения с атомами железа в степенях окисления +4, +6 и некоторых других.

Физические свойства.

Железо - типичный металл, блестящий серебристо-белый металл, его плотность 7,87 г\см3, т.пл. 1539 С. Обладает хорошей пластичностью. Железо легко намагничивается и размагничивается, а потому применяется в качестве сердечников динамомашин и электромоторов. Железо состоит из четырех стабильных изотопов с массовыми числами 54,56,57 и 58. Железо относится к умеренно тугоплавким металлам. В ряду стандартных электродных потенциалов железо стоит до водорода и легко реагирует с разбавленными кислотами.

Далее целесообразно отметить, что железо - после алюминия - самый распространенный в природе металл (общее содержание в земной коре - 4,65% по массе). Известно большое число минералов, в состав которых входит железо: магнетит (магнитный железняк) - Fe3O4, гематит (красный железняк) - Fe2O3, железный шпат (сидерит) - FeCO3, железный колчедан - FeS2 и др.

Химические свойства.

Для железа характерны степени окисления - +2 и +3.

Степени окисления +2 соответствует чёрный оксид FeO и зелёный гидроксид Fe(OH) 2 . Они имеют основный характер. В солях Fe(+2) присутствует в виде катиона. Fe(+2) - слабый восстановитель.

Степени окисления +3 соответствуют красно-коричневый оксид Fe 2 O 3 и коричневый гидроксид Fe(OH) 3 . Они носят амфотерный характер, хотя и кислотные, и основные свойства у них выражены слабо. Так, ионы Fe 3+ нацело гидролизуются даже в кислой среде. Fe(OH) 3 растворяется (и то не полностью), только в концентрированных щелочах. Fe 2 O 3 реагирует со щелочами только при сплавлении, давая ферриты (формальные соли несуществующей в свободном виде кислоты HFeO 2):

Железо (+3) чаще всего проявляет слабые окислительные свойства.

Степени окисления +2 и +3 легко переходят между собой при изменении окислительно-восстановительных условий.



Кроме того, существует оксид Fe 3 O 4 , формальная степень окисления железа в котором +8/3. Однако этот оксид можно также рассматривать как феррит железа (II) Fe +2 (Fe +3 O 2) 2 .

Также существует степень окисления +6. Соответствующего оксида и гидроксида в свободном виде не существует, но получены соли - ферраты (например, K 2 FeO 4). Железо (+6) находится в них в виде аниона. Ферраты являются сильными окислителями.

Свойства простого вещества.

При хранении на воздухе при температуре до 200 °C железо постепенно покрывается плотной плёнкой оксида, препятствующего дальнейшему окислению металла. Во влажном воздухе железо покрывается рыхлым слоем ржавчины, который не препятствует доступу кислорода и влаги к металлу и его разрушению. Ржавчина не имеет постоянного химического состава, приближённо её химическую формулу можно записать как Fe 2 O 3 ·xH 2 O.

Взаимодействует с кислотами.

· С соляной кислотой:

· С разбавленной серной кислотой:

· Концентрированные азотная и серная кислоты пассивируют железо. C концентрированной серной кислотой взаимодействует только при нагревании:

· Взаимодействие с кислородом:

· Сгорание железа на воздухе:

· Сгорание в чистом кислороде:

· Пропускание кислорода или воздуха через расплавленное железо:

· Взаимодействие с порошком серы при нагревании:

· Взаимодействие с галогенами при нагревании:

· Горение в хлоре:

· При повышенном давлении паров брома:

· Взаимодействие с йодом:

· Взаимодействие с неметаллами:

· С азотом при нагревании:

· С фосфором при нагревании:

· С углеродом:

· С кремнием:

· Взаимодействие раскалённого железа с водяным паром:

· Железо восстанавливает металлы, которые в ряду активности стоят правее него, из растворов солей:

· Железо восстанавливает соединения железа(III):

При повышенном давлении металлическое железо реагирует с оксидом углерода(II) CO, причём образуется жидкий, при обычных условиях легко летучий пентакарбонил железа Fe(CO)5. Известны также карбонилы железа составов Fe2(CO)9 и Fe3(CO)12. Карбонилы железа служат исходными веществами при синтезе железоорганических соединений, в том числе и ферроцена состава (η5-C5H5)2Fe.



Чистое металлическое железо устойчиво в воде и в разбавленных растворах щелочей. Железо не растворяется в холодных концентрированных серной и азотной кислотах из-за пассивации поверхности металла прочной оксидной плёнкой. Горячая концентрированная серная кислота, являясь более сильным окислителем, взаимодействует с железом.

Соединения железа (II) .

Оксид железа(II) FeO обладает основными свойствами, ему отвечает основание Fe(OH) 2 . Соли железа (II) обладают светло-зелёным цветом. При их хранении, особенно во влажном воздухе, они коричневеют за счёт окисления до железа (III). Такой же процесс протекает при хранении водных растворов солей железа(II):

Из солей железа(II) в водных растворах устойчива соль Мора - двойной сульфат аммония и железа(II) (NH 4) 2 Fe(SO 4) 2 ·6Н 2 O.

Реактивом на ионы Fe 2+ в растворе может служить гексацианоферрат(III) калия K 3 (красная кровяная соль). При взаимодействии ионов Fe 2+ и 3− выпадает осадок гексацианоферрата (III) калия-железа (II) (берлинская лазурь):

который внутримолекулярно перегруппировывается в гексацианоферрат (II) калия-железа (III):

Соединения железа (III) .

Оксид железа(III) Fe2O3 – самое устойчивое природное кислородсодержащее соединение железа.

Оксид железа(III) Fe2O3 слабо амфотерен, ему отвечает ещё более слабое, чем Fe (OH)2, основание Fe(OH)3, которое реагирует с кислотами:

Соли Fe3+ склонны к образованию кристаллогидратов. В них ион Fe3+ как правило окружен шестью молекулами воды. Такие соли имеют розовый или фиолетовый цвет.

Ион Fe3+ полностью гидролизуется даже в кислой среде. При рН>4 этот ион практически полностью осаждается в виде Fe(OH)3:

При частичном гидролизе иона Fe3+ образуются многоядерные оксо- и гидроксокатионы, из-за чего растворы приобретают коричневый цвет.

Основные свойства гидроксида железа(III) Fe(OH)3 выражены очень слабо. Он способен реагировать только с концентрированными растворами щелочей:

Образующиеся при этом гидроксокомплексы железа(III) устойчивы только в сильно щелочных растворах. При разбавлении растворов водой они разрушаются, причём в осадок выпадает Fe(OH)3.

При сплавлении со щелочами и оксидами других металлов Fe2O3 образует разнообразные ферриты:

Соединения железа(III) в растворах восстанавливаются металлическим железом:

Железо(III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов, например, KFe(SO4)2 - железокалиевые квасцы, (NH4)Fe(SO4)2 - железоаммонийные квасцы и т. д.

Для качественного обнаружения в растворе соединений железа(III) используют качественную реакцию ионов Fe3+ с неорганическими тиоцианатами SCN−. При этом образуется смесь ярко-красных роданидных комплексов железа 2+, +, Fe(SCN)3, -. Состав смеси (а значит, и интенсивность её окраски) зависит от различных факторов, поэтому для точного качественного определения железа этот метод неприменим.

Другим качественным реактивом на ионы Fe3+ служит гексацианоферрат (II) калия K4 (жёлтая кровяная соль). При взаимодействии ионов Fe3+ и 4− выпадает ярко-синий осадок гексацианоферрата (II) калия-железа (III):

Количественно ионы Fe3+ определяют по образованию красных (в слабокислой среде) или жёлтых (в слабощелочной среде) комплексов с сульфосалициловой кислотой. Эта реакция требует грамотного подбора буферов, так как некоторые анионы (в частности, ацетат) образуют с железом и сульфосалициловой кислотой смешанные комплексы со своими оптическими характеристиками.

Соединения железа (VI) .

Ферраты - соли не существующей в свободном виде железной кислоты H2FeO4. Это соединения фиолетового цвета, по окислительным свойствам напоминающие перманганаты, а по растворимости - сульфаты. Получают ферраты при действии газообразного хлора или озона на взвесь Fe(OH)3 в щелочи:

Ферраты также можно получить электролизом 30%-ного раствора щелочи на железном аноде:

Ферраты - сильные окислители. В кислой среде разлагаются с выделением кислорода:

Окислительные свойства ферратов используют для обеззараживания воды.

Нахождение в природе: в земной коре железо распространено достаточно широко - на его долю приходится около 4,1% массы земной коры (4-е место среди всех элементов, 2-е среди металлов). Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красные железняки (руда гематит, Fe2O3; содержит до 70% Fe), магнитные железняки (руда магнетит, Fe3О4; содержит 72,4% Fe), бурые железняки (руда гидрогетит НFeO2·nH2O), а также шпатовые железняки (руда сидерит, карбонат железа, FeСО3; содержит около 48% Fe). В природе встречаются также большие месторождения пирита FeS2 (другие названия - серный колчедан, железный колчедан, дисульфид железа и другие), но руды с высоким содержанием серы пока практического значения не имеют. По запасам железных руд Россия занимает первое место в мире. В морской воде 1·10–5 - 1·10–8% железа.

Биологическая роль.

Железо - незаменимый компонент гемоглобина, миоглобина, цитохромов, пероксидаз и каталаз. Комплекс железа и трансферрина связывается со специфическими рецепторами на мембранах пролифе-рирующих эритроидных клеток, и железо поступает внутрь клетки. При дефиците железа в организме образуются эритроциты с недостаточным содержанием гемоглобина, поэтому основное проявление недостатка железа - гипохромная анемия. Лечение препаратами железа приводит к постепенной регрессии клинических (например, слабости, быстрой утомляемости, головокружения, тахикардии, болезненности и сухости кожных покровов) и лабораторных симптомов.

Железо присутствует в организмах всех растений и животных как микроэлемент, то есть в очень малых количествах (в среднем около 0,02%). Однако железобактерии, использующие энергию окисления железа (II) в железо (III) для хемосинтеза, могут накапливать в своих клетках до 17-20% железа. Основная биологическая функция железа - участие в транспорте кислорода (O) и окислительных процессах. Эту функцию железа выполняет в составе сложных белков - гемопротеидов, простетической группой которых является железопорфириновый комплекс - гем. Среди важнейших гемопротеидов дыхательные пигменты гемоглобин и миоглобин, универсальные переносчики электронов в реакциях клеточного дыхания, окисления и фотосинеза цитохромы, ферменты каталоза и пероксида, и других. У некоторых беспозвоночных железосодержащие дыхательные пигменты гелоэритрин и хлорокруорин имеют отличное от гемоглобинов строение. При биосинтезе гемопротеидов железо переходит к ним от белка ферритина, осуществляющего запасание и транспорт железа. Этот белок, одна молекула которого включает около 4 500 атомов железа, концентрируется в печени, селезенке, костном мозге и слизистой кишечника млекопитающих и человека. Суточная потребность человека в железе (6-20 мг) с избытком покрывается пищей (железом богаты мясо, печень, яйца, хлеб, шпинат, свекла и другие). В организме среднего человека (масса тела 70 кг) содержится 4,2 г железа, в 1 л крови - около 450 мг. При недостатке железа в организме развивается железистая анемия, которую лечат с помощью препаратов, содержащих железо. Препараты железа применяются и как общеукрепляющие средства. Избыточная доза железа (200 мг и выше) может оказывать токсичное действие. Железо также необходимо для нормального развития растений, поэтому существуют микроудобрения на основе препаратов железа.

Препара́ты желе́за - группа лекарственных средств, содержащих соли или комплексы двух- и трёхвалентного железа, а также их комбинации с другими препаратами. В основном используются для лечения и профилактики железодефицитной анемии.

Препараты железа показаны при:

· железодефицитных состояниях (основное показание);

· при непереносимости коровьего молока;

· детям перенесшим острые или длительно текущие инфекционные заболевания.

Дефицит железа может быть вызван:

· недостаточным поступлением железа в организм плода (при фето-фетальной и фето-материнской трансфузии), ребёнка или взрослого человека;

· нарушением всасывания из просвета кишечника (синдром мальабсорбции, воспалительные процессы в кишечнике, на фоне приёма антибиотиков тетрациклинового ряда и других препаратов);

· острые массивные или хронические кровопотери (кровотечения, глистные инвазии, носовые геморрагии, ювенильные маточные кровотечения, длительная гематурия и другие);

· результат повышенного расходования железа (период интенсивного роста, инфекционные заболевания и другие).

Побочные эффекты.

При приёме препаратов железа внутрь могут возникнуть диспепсические эффекты (тошнота, рвота, диарея). Степень их выраженности тем выше, чем больше остаётся невсосавшегося препарата в просвете кишечника. Хуже всего (самая низкая биодоступность) усваивается из ЖКТ восстановленное железо (всего 0,5 %), именно эти препараты чаще всего приводят к нарушении функции кишечника (не следует применять у детей).

Активируя свободнорадикальные реакции, препараты железа способны повредить клеточные мембраны (в том числе, увеличить степень гемолизаэритроцитов).

После парентерального введения препаратов железа могут возникать нежелательные эффекты: из-за увеличения концентрации свободного железа в крови происходит снижение тонуса мелких сосудов - артериол и венул - повышается их проницаемость. Наблюдают покраснение кожи лица, шеи, прилив крови к голове, грудной клетке. Дальнейшее введение препарата в этом случае противопоказано. Если введение препарата не прекращают, в дальнейшем развивается гемосидероз внутренних органов и тканей.

При передозировке принимаемого внутрь препарата железа развиваются кровавые понос и рвота. При передозировке любого препарата железа снижается периферическое сопротивление сосудов, возрастает транссудация жидкости, снижается объём циркулирующей крови. В результате падает АД, возникает тахикардия.

В целом данную категорию лекарственных средств можно разделить на несколько основных групп: препараты на основе солей двухвалентного и трехвалентного железа, различных комплексных соединений железа и комбинированные средства. Препараты из солей железа назначаются только перорально.

Соли двухвалентного железа.

Поглощение железа клетками слизистой оболочки ЖКТ из солевых соединений в основном происходит в двухвалентной форме, так как апоферритин в энтероцитах может связываться только с ионами Fe 2 . Поэтому препараты на основе различных солей железа (II) (сульфата, фумарата, глюконата, сукцината, глутамата, лактата и т. п.) обладают большей биодоступностью, и в общем случае более предпочтительны, чем препараты, содержащие соли железа(III). Кроме того, они являются наиболее дешёвыми лекарственными средствами на фоне других препаратов железа.

Несмотря на указанные преимущества, солевые препараты железа имеют и существенные недостатки, в частности, высокий уровень желудочно-кишечных побочных эффектов (около 23 %)при использовании высоких дозировок. Биодоступность солей железа(II) может снижаться при взаимодействии с различными компонентами пищи и другими лекарственными препаратами (фитинами, оксалатами, танинами, антацидами и др.), в связи с чем их назначают натощак, хотя при этом усиливается их негативное воздействие на слизистую кишечника. Любая передозировка данных препаратов легко приводит к острому отравлению (в США в период с 1986 по 1996 год было зафиксировано 100 тыс. сообщений об отравлениях детей младше 6 лет солями железа), что также несколько ограничивает их широкое использование у детей.

Основными представителями препаратов из солей двухвалентного железа являются средства на основе гептагидрата сульфата железа FeSO 4 ·7H 2 O (содержание элементарного железа - 20 % от массы соли). Сульфат железа хорошо растворим в воде и, как и другие водорастворимые соли, имеет сравнительно высокую биодоступность. При этом следует заметить, что сульфат железа(II) во влажной среде постепенно окисляется до сульфата железа(III), что налагает некоторые ограничения на его хранение и использование (не может применяться в виде растворов, сиропов и других жидких форм). В России зарегистрировано несколько торговых наименований лекарственных средств, содержащих сульфат железа: «Тардиферон», «Гемофер пролонгатум», «Фенюльс» . Также сульфат железа иногда применяют в сочетании со стабилизирующими агентами, например, аскорбиновой кислотой, которая выступает в качестве антиоксиданта (торговые марки «Сорбифер Дурулес», «Ферроплекс» ).

Препараты на основе тетрагидрата хлорида железа FeCl 2 ·4H 2 O (содержание железа 28 %), в отличие от сульфата железа, в водных растворах не окисляются, поэтому производятся в форме капель для приёма внутрь (зарегистрированная в России торговая марка - «Гемофер») . При приёме таких препаратов следует учитывать, что растворы солей железа могут вызывать потемнение зубов, связанное с осаждением на их поверхности нерастворимого сульфида железа, образующегося при взаимодействии ионов Fe 2+ c сероводородом, который может содержаться в полости рта (например, при кариесе зубов).

Фумарат железа FeC 4 H 2 O 4 (содержание элементарного железа 33 % от массы соли), в отличие от предыдущих солей, менее растворим в воде, однако хорошо растворяется в разбавленных растворах кислот, таких, как желудочный сок. Поэтому препараты на основе фумарата железа более стабильны, не имеют характерного железного привкуса, не связываются с белками в верхних отделах ЖКТ, но в то же время хорошо растворяются непосредственно в желудке и поэтому по биодоступности не уступают водорастворимым солям. Фумарат железа зарегистрирован в России как лекарственное средство, однако на данный момент распространения не получил.

Соли трёхвалентного железа.

Препараты из солей трёхвалентного железа традиционно менее предпочтительны в сравнении с солями железа(II), так как для поглощения организмом ионы Fe 3+ должны предварительно восстановиться до Fe 2+ , что является причиной их меньшей биодоступности. Кроме этого, соли железа(III) в верхних отделах тонкой кишки легко гидролизуются с образованием малорастворимых гидроксидов, что также снижает их усвояемость.

Марганец.

Ма́рганец - элемент побочной подгруппы седьмой группы четвёртого периодапериодической системы химических элементов Д. И. Менделеева с атомным номером 25.

Электронная формула марганца имеет вид:
1s2 2s2 2p6 3s2 3p6 4s2 3d5
Валентные электроны находятся на 4s и 3d подуровнях. На валентных орбиталях атома марганца находится 7 электронов.

Распространение Марганца в природе. Среднее содержание Марганец в земной коре 0,1%, в большинстве изверженных пород 0,06-0,2% по массе, где он находится в рассеянном состоянии в форме Мn 2+ (аналог Fe 2+). На земной поверхности Мn 2+ легко окисляется, здесь известны также минералы Мn 3+ и Мn 4+ . В биосфере Марганец энергично мигрирует в восстановительных условиях и малоподвижен в окислительной среде. Наиболее подвижен Марганец в кислых водах тундры и лесных ландшафтов, где он находится в форме Мn 2+ . Содержание Марганца здесь часто повышено и культурные растения местами страдают от избытка Марганца; в почвах, озерах, болотах образуются железо-марганцевые конкреции, озерные и болотные руды. В сухих степях и пустынях в условиях щелочной окислительной среды Марганец малоподвижен, организмы бедны Марганцем, культурные растения часто нуждаются в марганцевых микроудобрениях. Речные воды бедны Марганцем (10 -6 -10 -5 г/л), однако суммарный вынос этого элемента реками огромен, причем основная его масса осаждается в прибрежной зоне. Еще меньше Марганца в воде озер, морей и океанов; во многих местах океанического дна распространены железо-марганцевые конкреции, образовавшиеся в прошлые геологические периоды.

Минералы марганца .

· пиролюзит MnO 2 ·x H 2 O, самый распространённый минерал (содержит 63,2 % марганца);

· манганит (бурая марганцевая руда) MnO(OH) (62,5 % марганца);

· браунит 3Mn 2 O 3 ·MnSiO 3 (69,5 % марганца);

· гаусманит (Mn II Mn 2 III)O 4 ;

· родохрозит (марганцевый шпат, малиновый шпат) MnCO 3 (47,8 % марганца);

· псиломелан m MnO MnO 2 n H 2 O (45-60 % марганца);

· пурпурит Mn 3+ , (36,65 % марганца).

Химические свойства.

Химически Марганец достаточно активен, при нагревании энергично взаимодействует с неметаллами - кислородом (образуется смесь оксидов Марганца разной валентности), азотом, серой, углеродом, фосфором и другими. При комнатной температуре Марганец на воздухе не изменяется: очень медленно реагирует с водой. В кислотах (соляной, разбавленной серной) легко растворяется, образуя соли двухвалентного Марганца. При нагревании в вакууме Марганец легко испаряется даже из сплавов.

Марганец образует сплавы со многими химическими элементами; большинство металлов растворяется в отдельных его модификациях и стабилизирует их. Так, Cu, Fe, Co, Ni и другие стабилизируют γ-модификацию. Al, Ag и другие расширяют области β- и σ-Mn в двойных сплавах. Это имеет важное значение для получения сплавов на основе Марганца, поддающихся пластической деформации (ковке, прокатке, штамповке).

В соединениях Марганец обычно проявляет валентность от 2 до 7 (наиболее устойчивы степени окисления +2, +4 и +7). С увеличением степени окисления возрастают окислительные и кислотные свойства соединений Марганца.

Соединения Mn(+2) - восстановители.

Оксид MnO - порошок серо-зеленого цвета; обладает основными свойствами. нерастворим в воде и щелочах, хорошо растворим в кислотах. Гидрооксид Mn(OH)3 - белое вещество, нерастворимое в воде. Соединения Mn(+4) могут выступать и как окислители (а) и как восстановители (б):

MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O (а)

(по этой редакции в лабораториях получают хлор)

MnO 2 + KClO 3 + 6KOH = 3K 2 MnO 4 + KCl + 3H 2 O (б)

(реакция идет при сплавлении).

Оксид Марганца (II) MnO2 - черно-бурого цвета, соответствующий гидрооксид Мп(ОН)4 - темно-бурого цвета. Оба соединения в воде нерастворимы, оба амфотсрны с небольшим преобладанием кислотной функции. Соли типа K2MnO4 называются манганитами.

Из соединений Mn(+6) наиболее характерны марганцовистая кислота и ее соли манганаты. Весьма важны соединения Mn(+7) - марганцовая кислота, марганцовый ангидрид и перманганаты.

Характерные степени окисления марганца:0, +2, +3, +4, +6, +7 (+1, +5 мало характерны).

При окислении на воздухе пассивируется. Порошкообразный марганец сгорает в кислороде (Mn + O2 → MnO2). Марганец при нагревании разлагает воду, вытесняя водород (Mn + 2H2O →(t) Mn(OH)2 + H2), образующийся гидроксид марганца замедляет реакцию.

Марганец поглощает водород, с повышением температуры его растворимость в марганце увеличивается. При температуре выше 1200 °C взаимодействует с азотом, образуя различные по составу нитриды.

Углерод реагирует с расплавленным марганцем, образуя карбиды Mn3C и другие. Образует также силициды, бориды, фосфиды.

C соляной и серной кислотами реагирует по уравнению:

С концентрированной серной кислотой реакция идёт по уравнению:

С разбавленной азотной кислотой реакция идёт по уравнению:

В щелочном растворе марганец устойчив.

Марганец образует следующие оксиды: MnO, Mn2O3, MnO2, MnO3 (не выделен в свободном состоянии) и марганцевый ангидрид Mn2O7.

Mn2O7 в обычных условиях жидкое маслянистое вещество тёмно-зелёного цвета, очень неустойчивое; в смеси с концентрированной серной кислотой воспламеняет органические вещества. При 90 °C Mn2O7 разлагается со взрывом. Наиболее устойчивы оксиды Mn2O3 и MnO2, а также комбинированный оксид Mn3O4 (2MnO·MnO2, или соль Mn2MnO4).

При сплавлении оксида марганца (IV) (пиролюзит) со щелочами в присутствии кислорода образуются манганаты:

Раствор манганата имеет тёмно-зелёный цвет. При подкислении протекает реакция:

Раствор окрашивается в малиновый цвет из-за появления аниона MnO4−, и из него выпадает коричневый осадок оксида-гидроксида марганца (IV).

Марганцевая кислота очень сильная, но неустойчивая, её невозможно сконцентрировать более, чем до 20 %. Сама кислота и её соли (перманганаты) - сильные окислители. Например, перманганат калия в зависимости от pH раствора окисляет различные вещества, восстанавливаясь до соединений марганца разной степени окисления. В кислой среде - до соединений марганца (II), в нейтральной - до соединений марганца (IV), в сильно щелочной - до соединений марганца (VI).

При прокаливании перманганаты разлагаются с выделением кислорода (один из лабораторных способов получения чистого кислорода). Реакция идёт по уравнению (на примере перманганата калия):

Под действием сильных окислителей ион Mn2+ переходит в ион MnO4−:

Эта реакция используется для качественного определения Mn2+.

При подщелачивании растворов солей Mn (II) из них выпадает осадок гидроксида марганца (II), быстро буреющий на воздухе в результате окисления.

Соли MnCl3, Mn2(SO4)3 неустойчивы. Гидроксиды Mn(OH)2 и Mn(OH)3 имеют основной характер, MnO(OH)2 - амфотерный. Хлорид марганца (IV) MnCl4очень неустойчив, разлагается при нагревании, чем пользуются для получения хлора:

Нулевая степень окисления у марганца проявляется в соединениях с σ-донорными и π-акцепторными лигандами. Так, для марганца и известен карбонил состава Mn2(CO)10.

Известны и другие соединения марганца с σ-донорными и π-акцепторными лигандами (PF3, NO, N2, P(C5H5)3).

Биологическая роль.

Марганец в организме. Марганец широко распространен в природе, являясь постоянной составной частью растительных и животных организмов. Содержание Марганца в растениях составляет десятитысячные-сотые, а в животных - стотысячные-тысячные доли процента. Беспозвоночные животные богаче Марганцем, чем позвоночные. Среди растений значительное количество Марганца накапливают некоторые ржавчинные грибы, водяной орех, ряска, бактерии родов Leptothrix, Crenothrix и некоторые диатомовые водоросли (Cocconeis) (до нескольких процентов в золе), среди животных - рыжие муравьи, некоторые моллюски и ракообразные (до сотых долей процента). Марганец - активатор ряда ферментов, участвует в процессах дыхания, фотосинтезе, биосинтезе нуклеиновых кислот и других, усиливает действие инсулина и других гормонов, влияет на кроветворение и минеральный обмен. Недостаток Марганца у растений вызывает некрозы, хлороз яблони и цитрусовых, пятнистость злаков, ожоги у картофеля, ячменя и т. п. Марганец обнаружен во всех органах и тканях человека (наиболее богаты им печень, скелет и щитовидная железа). Суточная потребность животных и человека в Марганце - несколько мг (ежедневно с пищей человек получает 3-8 мг Марганца). Потребность в Марганце повышается при физической нагрузке, при недостатке солнечного света; дети нуждаются в большем количестве Марганца, чем взрослые. Показано, что недостаток Марганца в пище животных отрицательно влияет на их рост и развитие, вызывает анемию, так называемых лактационную тетанию, нарушение минерального обмена костной ткани. Для предотвращения указанных заболеваний в корм вводят соли Марганца.

Биологическое действие марганца:
● антиоксидантное
● регулирующее уровень глюкозы в крови
● нормализирующее уровень холестерина и липидный состав крови
● противоанемическое
● противоаллергическое
● способствующее созреванию половых клеток, развитию плода и донашиванию беременности
● восстанавливающее структуру костной и хрящевой ткани
● противосудорожное, предупреждающее ПМС (предменструальный синдром) и др.

Признаки дефицита марганца:

● Утомляемость, слабость, головокружение, шум в ушах
● Ухудшение мозговой активности, снижение памяти
рвота
● Спазмы и судороги
● Боли в мышцах и суставах, двигательные расстройства, склонность к растяжениям и вывихам, артрит, неправильный рост и развитие скелетной системы
● Нарушение зрения
● Витилиго, нарушения пигментации кожи
● Задержка роста ногтей и волос
● Диабет, снижение толерантности к глюкозе, избыточный вес, высокий уровень холестерина, проблемы метаболизма
● Риск бесплодия, репродуктивные проблемы, ранний климакс, дисфункция яичников, остеопороз в климактерическом периоде
● Снижение иммунитета, преждевременное старение
● Аллергии
● Риск раковых заболеваний
● Задержка развития у детей, появление детей с патологиям

Признаки токсичности марганца:

Избыток марганца токсичен: он нарушает всасывание железа и конкурирует с медью в процессе кроветворения, вызывая анемию, а также обуславливает другие патологические изменения.
● Слабый аппетит, апатия, депрессия
● Общая слабость, бессилие
● Нарушенный сон
● Временное безумие, слабоумие
● Неврологические проблемы
● Паркинсонизм или болезнь Паркинсона (мышечная регидность, тремор, монотонный голос, "замороженное" подобное маске лицо).

Кобальт

Со, химический элемент с атомным номером 27. Его атомная масса 58,9332. Природный кобальт состоит из двух стабильных нуклидов: 59 Со (99,83% по массе) и 57 Со (0,17%). В периодической системе элементов Д. И. Менделеева кобальт входит в группу VIII и вместе с железом и никелем образует в 4-м периоде в этой группе триаду близких по свойствам переходных металлов. Конфигурация двух внешних электронных слоев атома кобальта 3s 2 p 6 d 7 4s 2 . Образует соединения чаще всего в степени окисления +2, реже - в степени окисления +3 и очень редко в степенях окисления +1, +4 и +5.

Кобальт - минеральное вещество, который является частью витамина B12. Обычно измеряется в микрограммах (мкг). Кобальт - необходим для красных кровяных клеток. Должен быть получен из пищевых источников. Дневная норма кобальта не установлена, и лишь очень малые количества этого минерального вещества нужны в рационе(обычно не более 8 мкг).

Нахождение в природе.

В земной коре содержание кобальта равно 4·10 -3 % по массе. Кобальт входит в состав более 30 минералов. К ним относятся каролит CuCo 2 S 4 , линнеит Co 3 S 4 , кобальтинCoAsS, сферокобальтит CoCO 3 , смальтит СоAs 2 и другие. Как правило, кобальту в природе сопутствуют его соседи по 4-му периоду - никель, железо, медьи марганец. В морской воде приблизительно (1-7)·10 -10 % кобальта.

Кобальт - относительно редкий металл, и богатые им месторождения в настоящее время практически исчерпаны. Поэтому кобальтсодержащее сырье (часто это никелевые руды, содержащие кобальт как примесь) сначала обогащают, получают из него концентрат. Далее для извлечения кобальта концентрат или обрабатывают растворами серной кислоты или аммиака, или методами пирометаллургии перерабатывают в сульфидный или металлический сплав. Этот сплав затем выщелачивают серной кислотой. Иногда для извлечения кобальта проводят сернокислотное «кучное» выщелачивание исходной руды (измельченную руду размещают в высоких кучах на специальных бетонных площадках и сверху поливают эти кучи выщелачивающим раствором).

Физические свойства.

Кобальт - твердый металл, существующий в двух модификациях. При температурах от комнатной до 427 °C устойчива α-модификация. При температурах от 427 °C до температуры плавления (1494 °C) устойчива β-модификация кобальта (решётка кубическая гранецентрированная). Кобальт - ферромагнетик, точка Кюри 1121 °C. Желтоватый оттенок ему придает тонкий слой оксидов.

Химические свойства.

Оксиды.

· На воздухе кобальт окисляется при температуре выше 300 °C.

· Устойчивый при комнатной температуре оксид кобальта представляет собой сложный оксид Co 3 O 4 , имеющий структуру шпинели, в кристаллической структуре которого одна часть узлов занята ионами Co 2+ , а другая - ионами Co 3+ ; разлагается с образованием CoO выше 900 °C.

· При высоких температурах можно получить α-форму или β-форму оксида CoO.

· Все оксиды кобальта восстанавливаются водородом:

Оксид кобальта (III) можно получить, прокаливая соединения кобальта (II), например:

Другие соединения.

· При нагревании, кобальт реагирует с галогенами, причём соединения кобальта (III) образуются только с фтором.

· С серой кобальт образует 2 различных модификации CoS. Серебристо-серую α-форму (при сплавлении порошков) и чёрную β-форму (выпадает в осадок из растворов).

· При нагревании CoS в

Трудно переоценить роль железа для человеческого организма, ведь именно оно способствует «творению» крови, его содержание влияет на уровень гемоглобина и миоглобина, железо нормализует работу ферментной системы. Но что это за элемент с точки зрения химии? Какая валентность железа? Об этом будет рассказано в данной статье.

Немного истории

Человечество знало об этом химическом элементе и даже владело изделиями из него еще в IV веке до нашей эры. Это были народы Древнего Египта и Шумеры. Именно они первые начали изготавливать украшения, оружие из сплава железа и никеля, которые были найдены при археологических раскопках и тщательно исследованы химиками.

Немного позже, племена арийцев, переселившиеся в Азию, научилось добывать твердое железо из руды. Оно было настолько ценным для людей того времени, что изделия покрывали золотом!

Характеристика железа

Железо (Fe) стоит на четвертом месте по содержанию его в недрах земной коры. Оно занимает место в 7 группе 4 периода и имеет номер 26 в химической таблице элементов Менделеева. Валентность железа имеет прямую зависимость от своего положения в таблице. Но об этом позже.

Данный металл наиболее всего распространен в природе в виде руды, встречается в воде как минерал, а также в различных соединениях.

Наибольшее количество запасов железа в виде руды, находится в России, Австралии, Украине, Бразилии, США, Индии, Канаде.

Физические свойства

Прежде чем переходить к валентности железа, необходимо подробнее рассмотреть его физические свойства, так сказать, приглядеться к нему поближе.

Этот металл имеет достаточно пластичный, но способен к увеличению твердости путем его взаимодействия с другими элементами (например, с углеродом). Также он обладает магнитными свойствами.

Во влажной среде железо может корродировать, то есть ржаветь. Хотя абсолютно чистый металл устойчивее к влаге, но если в нем есть примеси, именно они провоцируют коррозию.

Железо хорошо взаимодействует с кислотной средой, даже может образовывать соли железной кислоты (при условии сильного окислителя).

В воздушной среде быстро покрывается оксидной пленкой, которая защищает его от взаимодействий.

Химические свойства

Также этот элемент обладает рядом химических свойств. Железо, как и остальные элементы таблицы Менделеева, имеет заряд атомного ядра, который соответствует порядковому номеру +26. А возле ядра вращается 26 электронов.

А вообще, если рассматривать свойства железа - химического элемента, то он является металлом с невысокой активной способностью.

Взаимодействуя с окислителями более слабыми, железо образует соединения, где оно двухвалентно (то есть его степень окисления +2). А если с сильными окислителями, то степень окисления железа достигает +3 (то есть валентность его становится равной 3).

При взаимодействии с химическими элементами, которые не являются металлами, Fe выступает по отношению к ним восстановителем, при этом степень окисления его становиться, кроме +2 и +3, даже +4, +5, +6. Такие соединения имеют очень сильные окислительные свойства.

Как уже отмечалось выше, железо в воздушной среде покрывается оксидной пленкой. А при нагревании скорость реакции повышается и может образоваться оксид железа с валентностью 2 (температура менее 570 градусов по Цельсию) или оксид с валентностью 3 (температурный показатель более 570 градусов).

Взаимодействие Fe с галогенами, приводит к образованию солей. Элементы фтор и хлор окисляют его до +3. Бром же - до +2 или +3 (все зависит от того, какие условия осуществления химического превращения при взаимодействии с железом).

Вступая во взаимодействия с йодом, элемент окисляется до +2.

Нагревая железо и серу, получается сульфид железа с валентностью 2.

Если феррум расплавить и соединить его с углеродом, фосфором, кремнием, бором, азотом, то получатся соединения называемые сплавами.

Железо является металлом, поэтому оно вступает во взаимодействие и с кислотами (об этом кратко также говорилось чуть выше). Например, кислоты серная и азотная, имеющие высокую концентрацию, в среде с пониженной температурой, на железо не оказывают воздействия. Но стоит ей повысится, как происходит реакция, в результате которой железо окисляется до +3.

Чем выше концентрация кислоты, тем большую температуру необходимо дать.

Нагревая 2-х валентное железо в воде, получим его оксид и водород.

Также Fe обладает способностью вытеснять из водных растворов солей металлы, которые имеют пониженную активность. При этом он окисляется до +2.

При повышении температуры, железо восстанавливает металлы из оксидов.

Что такое валентность

Уже в предыдущем разделе немного встречалось понятие валентности, а также степени окисления. Пришло время рассмотреть валентность железа.

Но для начала необходимо понять, что это вообще за такое свойство химических элементов.

Химические вещества почти всегда постоянны в своем составе. Например, в формуле воды Н2О - 1 атом кислорода и 2 атома водорода. То же самое и с другими соединениями, в которых задействованы два химических элемента, один из которых водород: к 1 атому химического элемента может добавиться 1-4 атома водорода. Но никак не наоборот! А потому, видно, что водород присоединяет к себе всего 1 атом другого вещества. И именно это явление называют валентностью - способностью атомов химического элемента присоединять конкретное количество атомов других элементов.

Значение валентности и графическая формула

Есть элементы таблицы Менделеева, которые обладают постоянной валентностью - это кислород и водород.

А есть такие химические элементы, у которых она изменяется. Например, железо чаще 2-х и 3-х валентно, сера 2, 4, 6-ти, углерод 2 и 4-х. Это элементы с переменной валентностью.

Также, зная валентность одного из элементов в соединении, можно определить валентность другого.

Валентность железа

Как было отмечено, железо относится к элементам с переменной валентностью. И она может колебаться не только между показателями 2 и 3, но и достигать 4, 5 и даже 6.

Конечно, более подробно изучает валентность железа Рассмотрим этот механизм кратко на уровне простейших частиц.

Железо является д-элементом, к которому причисляется еще 31 элемент таблицы Менделеева (это 4-7 периоды). С возрастанием порядкового номера, свойства д-элементов приобретают небольшие изменения. Атомный радиус у этих веществ также медленно возрастает. Они обладают переменной валентностью, которая зависит от того, что предвнешний д-электронный подуровень является незавершенным.

Потому для железа валентными есть не только с-электроны, находящиеся во внешнем слое, но и неспаренные 3д-электроны предвнешнего слоя. И, как следствие, валентность Fe в химических соединениях может равнятся 2, 3, 4, 5, 6. В основном, она равна 2 и 3 - это более устойчивые с другими веществами. В менее устойчивых - он проявляет валентность 4, 5, 6. Но, такие соединения встречаются реже.

Двухвалентный феррум

При взаимодействии 2 валентного железа с водой получается оксид железа (2). Такое соединение обладает черным цветом. Достаточно легко взаимодействует с соляной (малой концентрации) и азотной (высокой концентрации) кислотами.

Если такому оксиду 2-х валентного железа провзаимодействовать или с водородом (температура 350 градусов по Цельсию), или с углеродом (коксом) при 1000 градусов, то оно восстанавливается до чистого состояния.

Добывают оксид железа 2-х валентного такими способами:

  • через соединение оксида 3-х валентного железа с угарным газом;
  • при нагревании чистого Fe, при этом низкое давление кислорода;
  • при раскладывании оксалата 2-х валентного железа в вакуумной среде;
  • при взаимодействии чистого железа с его оксидами, температура при этом 900-1000 градусов по Цельсию.

Что касается природной среды, то оксид железа 2-х валентного, присутствует в виде минерала вюстита.

Есть еще способ, как в растворе определить валентность железа - в данном случае, имеющего ее показатель 2. Необходимо провести реакции с красной солью (гексацианоферрат калия) и с щелочью. В первом случае наблюдается получение осадка темно-синего цвета - комплексной соли железа 2-х валентного. Во втором - получение темного серо-зеленого осадка - гидроксида железа также 2-х валентного, в то время, как гидроксид железа 3-х валентного имеет цвет в растворе темно-бурый.

Трехвалентное железо

Оксид 3-х валентного феррума имеет порошкообразную структуру, цвет которой красно-коричневый. Имеет также наименования: окись железа, красный пигмент, пищевой краситель, крокус.

В природе это вещество встречается в виде минерала - гематита.

Оксид такого железа с водой уже не взаимодействует. Но соединяется с кислотами и щелочами.

Применяется оксид железа (3) для окрашивания материалов, применяемых в строительстве:

  • кирпичей;
  • цемента;
  • керамических изделий;
  • бетона;
  • тротуарной плитки;
  • напольных покрытий (линолеум).

Железо в организме человека

Как отмечалось в начале статьи, вещество железо является важной составляющей человеческого организма.

Когда этого элемента является недостаточно, то могут возникнуть следующие последствия:

  • повышенная усталость и чувствительность к холоду;
  • сухость кожи;
  • снижение мозговой деятельности;
  • ухудшение прочности ногтевой пластины;
  • головокружение;
  • проблемы с пищеварением;
  • седина и выпадение волос.

Накапливается железо, как правило, в селезенке и печени, а также почках и поджелудочной железе.

В рационе человека должны быть продукты, содержащие железо:

  • говяжья печень;
  • гречневая каша;
  • арахис;
  • фисташки;
  • зеленый горошек консервированный;
  • сушенные белые грибы;
  • куриные яйца;
  • шпинат;
  • кизил;
  • яблоки;
  • груши;
  • персики;
  • свекла;
  • морепродукты.

Недостаток железа в крови, приводит к снижению гемоглобина и развитию такого заболевания, как железодефицитная анемия.

В таблице элементов Менделеева трудно найти какой-либо другой элемент, с которым так неразрывно связывалась бы жизнь человечества.

Железо - важнейший строительный материал мироздания. Железо есть всюду. Астрономы при помощи спектрального анализа находят железо в раскаленных атмосферах бесчисленных далеких и близких звезд. Геофизики утверждают, что ядро земного шара состоит из железа с примесью похожих на него металлов - никеля и кобальта; земная же кора не больше как легкая окалина, которая, как подсчитали геохимики, на 4,5 % состоит из железа. На поверхности Земли железо распространено повсеместно. Оно находится почти во всех глинах, песках, горных породах. В некоторых местностях оно образует мощное скопление руд, из которых, например, на Урале, состоят целые горы - Бакан, Высокая, Магнитная и др. Агрономы повсеместно находят железо в почвах. Биохимики раскрывают огромную роль железа в жизни растений, животных и человека.

Входя в состав гемоглобина, железо обусловливает красный цвет этого вещества, от которого, в свою очередь, зависит цвет крови. В организме взрослого человека содержится 3 г железа, из них 75 % входят в состав гемоглобина, благодаря которому осуществляется важнейший биологический процесс - дыхание. В организмах животных и человека железо распространено "повсеместно": даже в тканях глазного хрусталика и роговицы, совершенно лишенных кровеносных сосудов, содержится железо. Наиболее богаты железом печень и селезенка.

Существует много живых организмов без гемоглобина, однако и в них содержится железо. Оно входит в состав протоплазмы, в которой при участии железа осуществляется необходимый процесс внутриклеточного дыхания.

Железо необходимо и для растений. Оно участвует в окислительных процессах протоплазмы, при дыхании растений и в построении хлорофилла, хотя само и не входит в его состав.

Растения, искусственно лишенные железа, имеют бесцветные листья, при добавлении незначительного количества железной соли к воде, питающей растения, листья вскоре становятся зелеными. Больше того, достаточно бесцветный лист смазать очень слабым раствором железной соли, как смазанное место вскоре зазеленеет.

Издавна железо применяется в медицине при лечении малокровия, при истощении, упадке сил.

Знакомство человека с железом произошло в давние времена. Есть основания полагать, что образцы железа, которые держали в руках первобытные люди, были неземного происхождения. Входя в состав некоторых метеоритов - вечных странников океана Вселенной, случайно нашедших приют на нашей планете,- метеоритное железо было тем материалом, из которого человек изготовил впервые железные изделия. Прошли многие сотни и тысячи лет, прежде чем человек научился добывать железо из руды. С того момента началась эпоха железа, которая длится и до настоящего времени.

При падении (18 октября 1916 г. вблизи с. Богуславки , Дальневосточного края) метеорит разбился. Два осколка, найденные специальной экспедицией, весят 256 кг. Однако в метеоритах железо не является абсолютно чистым. В большинстве случаев в них содержатся никель , кобальт и некоторые другие элементы. В среднем железные метеориты содержат в себе 90% железа, 8,5% никеля, 0,5 % кобальта и 1 % других элементов. Метеоритное железо, в отличие от земного , хорошо куется только в холодном состоянии. Метеоритное железо отличается от чистого земного, весьма редко встречающегося в некоторых базальтовых породах, внутренним строением. При действии кислоты наполированную поверхность железного метеорита появляется характерный узор, несколько напоминающий ледяной рисунок на оконных стеклах.

Знаменитое "палласово железо", названное так по имени нашедшего его путешественника и естествоиспытателя П. С. Палласа, представляет один из крупнейших в мире железокаменных метеоритов. По своему строению он напоминает железную губку, поры которой заполнены стекловидным минералом - оливином.

Самым крупным из железных метеоритов, падения которого в историческое время не наблюдали, является найденный в 1920 г. в Юго-Западной Африке метеорит "Гоба " весом около 60 т. Несколько меньший по весу железный метеорит был обнаружен в 1896 г. во льдах Гренландии известным американским полярным путешественником Робертом Пири . Этот метеорит весил 33 т. С величайшим трудом он был доставлен в Нью-Йорк, где и хранится до сих пор.

Ежегодно на поверхность Земли из глубины мирового пространства выпадает до 3000 т метеоритного вещества, железо которого пополняет Землю этим элементом. Так, например, в 1891 г. в Аризонской пустыне была обнаружена огромная воронка неизвестного происхождения. Поперечник ее был равен 1200 м, глубина - около 175 м. Изучение воронки показало, что она образована исполинским железным метеоритом, когда-то упавшим здесь. Любитель астрономии, инженер по профессии Баррингер с большим трудом сумел организовать акционерное общество по использованию железного метеорита для промышленных целей. Американские бизнесмены были соблазнены жаждой наживы: был пущен слух, что в осколках Аризонского метеорита обнаружена платина . Однако основная масса метеорита лежала глубоко под землей. Алмазный бур, дойдя до основной массы метеорита, лежащей на глубине 420 м, сломался, и промышленники, не найдя в образцах пробуренной породы платины, прекратили работы. Аризонский метеорит, по расчетам ученых, весил несколько десятков тысяч тонн. Он упал в доисторическое время.

30 июня 1908 г. упал знаменитый Тунгусский метеорит, огромную работу по отысканию которого провел неутомимый путешественник, ученый и герой Великой Отечественной войны Л. А. Кулик. По размерам разрушений, которые произвел этот метеорит при падении в тайге, известный советский астроном И. А. Астапович рассчитал его массу. Она оказалась колоссальной. Метеорит весил 50 тыс. т.

В годы двух последних мировых войн, во время некоторых сражений железо расходовалось в огромных количествах. Во время первой мировой войны одна только Германия выбрасывала в снарядах, торпедах, бомбах, минах, гранатах до 10 млн. т металла в год. Это в два с половиной раза превосходило годовую выплавку чугуна царской России. Сотни тысяч тонн железа, добытых из недр земли и превращенных в артиллерийские снаряды, были рассеяны смертоносными осколками на полях войны. О величине этого "посева" могут дать представление следующие количества снарядов, выброшенных в течение войны основными воюющими государствами: Россия - 50 млн., Англия - 170 млн., Германия - 272 млн., Франция - 200 млн. (по двум калибрам - 76 и 150 мм).

В ходе войны были дни и даже часы, в течение которых выбрасывались сотни тысяч и даже миллионы снарядов. Так, например, англичане за 4 дня боев при Аррасе израсходовали в 1917 г. 10 млн. снарядов. Один миллион снарядов выбросили американцы в сражении при Сан-Мишель за... 4 часа! Только под стенами французской крепости Верден было распылено в железный прах не менее 3 млн. т железа.

Не менее расточительна была трата железа и во время Великой Отечественной войны 1941-1945 гг. Чтобы судить о масштабах расхода железа в сражениях минувшей войны, достаточно указать одну цифру - миллион бомб, сброшенных фашистской авиацией во время битвы на Волге.

Но железо - не только борьба, война, разрушения; железо - металл созидания. Железо - основа всей металлургии, машиностроения, железнодорожного транспорта, судостроения, грандиозных инженерных сооружений - от башни Эйфеля до ажура железнодорожных мостов.

Все, все - начиная от швейной иглы, гвоздя, топора и кончая паутиной железных дорог, плавающими крепостями - авианосцами и линкорами - и огнедышащими домнами, где рождается само железо,- состоит из железа.

Химически чистое железо - серебристо-серый, блестящий, пластичный, по внешнему виду очень похожий на платину металл. Оно устойчиво против коррозии и хорошо сопротивляется действию кислот. Однако ничтожные примеси лишают железо этих драгоценных свойств, и на земном шаре ежегодно теряется такое количество железа, которое равняется почти четверти его годовой добычи. Плотность железа 7,87. При температуре 1539°С железо плавится, а при 2740° С - кипит. Чистое железо легко намагничивается и размагничивается.

Название железа происходит от санскритского слова "жалжа ", что означало "металл, руда". Научное название элемента произошло от латинского слова "феррум " - железо.

Железо – химический элемент

1. Положение железа в периодической таблице химических элементов и строение его атома

Железо - это d- элемент VIII группы; порядковый номер – 26; атомная масса Ar (Fe ) = 56; состав атома: 26-протонов; 30 – нейтронов; 26 – электронов.

Схема строения атома:

Электронная формула: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2

Металл средней активности, восстановитель:

Fe 0 -2 e - → Fe +2 , окисляется восстановитель

Fe 0 -3 e - → Fe +3 , окисляется восстановитель

Основные степени окисления: +2, +3

2. Распространённость железа

Железо – один из самых распространенных элементов в природе . В земной коре его массовая доля составляет 5,1%, по этому показателю оно уступает только кислороду, кремнию и алюминию . Много железа находится и в небесных телах, что установлено по данным спектрального анализа. В образцах лунного грунта, которые доставила автоматическая станция “Луна”, обнаружено железо в неокисленном состоянии.

Железные руды довольно широко распространены на Земле. Названия гор на Урале говорят сами за себя: Высокая, Магнитная, Железная. Агрохимики в почвах находят соединения железа.

Железо входит в состав большинства горных пород. Для получения железа используют железные руды с содержанием железа 30-70% и более.

Основными железными рудами являются :

магнетит (магнитный железняк) – Fe 3 O 4 содержит 72% железа, месторождения встречаются на Южном Урале, Курской магнитной аномалии:


гематит (железный блеск, кровавик)– Fe 2 O 3 содержит до 65% железа, такие месторождения встречаются в Криворожском районе:

лимонит (бурый железняк) – Fe 2 O 3* nH 2 O содержит до 60% железа, месторождения встречаются в Крыму:


пирит (серный колчедан, железный колчедан, кошачье золото) – FeS 2 содержит примерно 47% железа, месторождения встречаются на Урале.


3. Роль железа в жизни человека и растений

Биохимики открыли важную роль железа в жизни растений, животных и человека. Входя в состав чрезвычайно сложно построенного органического соединения, называемого гемоглобином, железо обусловливает красную окраску этого вещества, от которого в свою очередь, зависит цвет крови человека и животных. В организме взрослого человека содержится 3 г чистого железа, 75% которого входит в состав гемоглобина. Основная роль гемоглобина – перенос кислорода из легких к тканям, а в обратном направлении – CO 2 .

Железо необходимо и растениям. Оно входит в состав цитоплазмы, участвует в процессе фотосинтеза. Растения, выращенные на субстрате, не содержащем железа, имеют белые листья. Маленькая добавка железа к субстрату – и они приобретают зеленый цвет. Больше того, стоит белый лист смазать раствором соли, содержащей железо, и вскоре смазанное место зеленеет.

Так от одной и той же причины – наличия железа в соках и тканях – весело зеленеют листья растений и ярко румянятся щеки человека.

4. Физические свойства железа.

Железо – это серебристо-белый металл с температурой плавления 1539 о С. Очень пластичный, поэтому легко обрабатывается, куется, прокатывается, штампуется. Железо обладает способностью намагничиваться и размагничиваться, поэтому применяется в качестве сердечников электромагнитов в различных электрических машинах и аппаратах. Ему можно придать большую прочность и твердость методами термического и механического воздействия, например, с помощью закалки и прокатки.

Различают химически чистое и технически чистое железо. Технически чистое железо, по сути, представляет собой низкоуглеродистую сталь, оно содержит 0,02 -0,04% углерода, а кислорода, серы, азота и фосфора – еще меньше. Химически чистое железо содержит менее 0,01% примесей. Химически чистое железо – серебристо-серый, блестящий, по внешнему виду очень похожий на платину металл. Химически чистое железо устойчиво к коррозиии хорошо сопротивляется действию кислот. Однако ничтожные доли примесей лишают его этих драгоценный свойств.

5. Получение железа

Восстановлением из оксидов углём или оксидом углерода (II), а также водородом:

FeO + C = Fe + CO

Fe 2 O 3 + 3CO = 2Fe + 3CO 2

Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O

Опыт "Получение железа алюминотермией"

6. Химические свойства железа

Как элемент побочной подгруппы железо может проявлять несколько степеней окисления. Мы рассмотрим только соеди­нения, в которых железо проявляет степени окисления +2 и +3. Таким образом, можно говорить, что у железа имеется два ряда соединений, в которых оно двух- и трехвалентно.

1) На воздухе железо легко окисляется в присутствии влаги (ржавление):

4Fe + 3O 2 + 6H 2 O = 4Fe(OH) 3

2) Накалённая железная проволока горит в кислороде, образуя окалину - оксид железа (II,III) - вещество чёрного цвета:

3Fe + 2O 2 = Fe 3 O 4

C кислородом во влажном воздухе образуется Fe 2 O 3 * nH 2 O

Опыт "Взаимодействие железа с кислородом"

3) При высокой температуре (700–900°C) железо реагирует с парами воды:

3Fe + 4H 2 O t˚C → Fe 3 O 4 + 4H 2 ­

4) Железо реагирует с неметаллами при нагревании:

Fe + S t˚C → FeS

5) Железо легко растворяется в соляной и разбавленной серной кислотах при обычных условиях:

Fe + 2HCl = FeCl 2 + H 2 ­

Fe + H 2 SO 4 (разб .) = FeSO 4 + H 2 ­

6) В концентрированных кислотах – окислителях железо растворяется только при нагревании

2Fe + 6H 2 SO 4 (конц .) t˚C → Fe 2 (SO 4) 3 + 3SO 2 ­ + 6H 2 O

Fe + 6HNO 3 (конц .) t˚C → Fe(NO 3) 3 + 3NO 2 ­ + 3H 2 O Железо (III)

7. Применение железа.

Основная часть получаемого в мире железа используется для получения чугуна и стали - сплавов железа с углеродом и другими металлами. Чугуны содержат около 4% углерода. Стали содержат углерода менее 1,4%.

Чугуны необходимы для производства различных отли­вок - станин тяжелых машин и т.п.

Изделия из чугуна

Стали используются для изготовления машин, различных строительных материалов, балок, листов, проката, рельсов, инструмента и множества других изделий. Для производства различных сортов сталей применяют так называемые легиру­ющие добавки, которыми служат различные металлы: М

Тренажёр №2 - Генетический ряд Fe 3+

Тренажёр №3 - Уравнения реакций железа с простыми и сложными веществами

Задания для закрепления

№1. Составьте уравнения реакций получения железа из его оксидов Fe 2 O 3 и Fe 3 O 4 , используя в качестве восстановителя:
а) водород;
б) алюминий;
в) оксид углерода (II).
Для каждой реакции составьте электронный баланс.

№2. Осуществите превращения по схеме:
Fe 2 O 3 -> Fe - +H2O, t -> X - +CO, t -> Y - +HCl ->Z
Назовите продукты X, Y, Z?